New Cardiac Guidelines – Where They Agree, Where They Differ, and How Does It Affect Patient Care Sandra M Swain, MD, FACP, FASCO Professor of Medicine Associate Dean for Research Development Georgetown University Washington DC, USA

Faculty Disclosure

No, nothing to disclose

X Yes, please specify:

Company Name	Honoraria/ Expenses	Consulting/ Advisory Board	Funded Research	Royalties/ Patent	Stock Options	Ownership/ Equity Position	Employee	Other (please specify)
AstraZeneca, PLC.		X						
Eli Lilly and Company		X	Х					
Caris Centers of Excellence	Х							
Genentech, Inc. /Roche, Ltd.	Х	X	Х					
Inivata, Ltd.	Х	X						
Merrimack Pharmaceuticals			Х					
Novartis International AG	Х							
Pfizer Inc.								
Pieris Pharmaceuticals Inc.	Х	X						
Puma Biotechnology			X					

GUIDELINES in Cardio-Oncology

- American Heart Association
- European Society of Cardiology
- American Society of Clinical Oncology
- American Society of Echocardiography & European Association of Cardiovascular Imaging
- FDA package inserts
 - -Trastuzumab
 - -Pertuzumab
- NCCN

Detection, prevention, and treatment of left ventricular dysfunction in breast cancer – American Heart Association

Mehta, et al., *Circulation* 2018;137:e30-e66.

Table 6 Proposed diagnostic tools for the detection of cardiotoxicity

Technique	Currently available diagnostic criteria	Advantages	Major limitations
Echocardiography: - 3D-based LVEF - 2D Simpson's LVEF - GLS	 LVEF:>10 percentage points decrease to a value below the LLN suggests cardiotoxicity. GLS:>15% relative percentage reduction from baseline may suggest risk of cardiotoxicity. 	 Wide availability. Lack of radiation. Assessment of haemodynamics and other cardiac structures. 	 Inter-observer variability. Image quality. GLS: inter-vendor variability, technical requirements.
Nuclear cardiac imaging (MUGA)	 >10 percentage points decrease in LVEF with a value <50% identifies patients with cardiotoxicity. 	Reproducibility.	 Cumulative radiation exposure. Limited structural and functional information on other cardiac structures.
Cardiac magnetic resonance	Typically used if other techniques are non-diagnostic or to confirm the presence of LV dysfunction if LVEF is borderlines.	 Accuracy, reproducibility. Detection of diffuse myocardial fibrosis using T1/T2 mapping and ECVF evaluation. 	 Limited availability. Patient's adaptation (claustrophobia, breath hold, long acquisition times).
Cardiac biomarkers: - Troponin I - High-sensitivity Troponin I - BNP - NT-proBNP	 A rise identifies patients receiving anthracyclines who may benefit from ACE-Is. Routine role of BNP and NT-proBNP in surveillance of high-risk patient needs futher investigation. 	 Accuracy, reproducibility. Wide availability. High-sensitivity. 	 Insufficient evidence to establish the significance of subtle rises. Variations with different assays. Role for routine surveillance not clearly established.

European Society of Cardiology position paper on cancer treatment and cardiovascular toxicity

Myocardial dysfunction & heart failure

- LVEF should be determined before and during treatment with a method of sufficient image quality
- LLN is 50%
- If LVEF >10% drop and > LLN repeat assessment
- In asymptomatic pts, If LVEF >10% drop and < LLN
 ACE inhibitors or ARBs and beta blockers
- In symptomatic pts ACE inhibitors and beta-blockers recommended

Coronary artery disease

- Assessment based on history, gender, age, and treatment
- Pyrimidine analogs regular ECGs
- Drug re-challenge after vasospasm only if no alternative and pretreat with nitrates and/or calcium channel blockers
- Long term follow-up and when required, testing for the presence of CAD

Table 7 Pathophysiological mechanisms of coronary artery disease in cancer treatment^{7,60,81,99,117-123}

Agent	Pathophysiological mechanism	Risk of coronary artery disease and acute coronary syndrome • Up to 18% manifest myocardial ischaemia • Up to 7–10%: silent myocardial ischaemia • 20-year absolute risk of up to 8% after testicular cancer • 2% risk of arterial thrombosis • Risk of arterial thrombosis: bevacizumab 3.8%, sorafenib 1.7%, sunitinib 1.4%		
Fluoropyrimidines (5-FU, capecitabine, gemcitabine)	 Endothelial injury Vasospasm 			
Platinum compounds (cisplatin)	 Procoagulant status Arterial thrombosis 			
VEGF inhibitors (bevacizumab, sorafenib, sunitinib)	 Procoagulant status Arterial thrombosis Endothelial injury 			
Radiotherapy	 Endothelial injury Plaque rupture Thrombosis 	 2-7-fold increased relative risk of myocardial infarction Cumulative 30-year coronary events incidence of 10% in Hogdkin lymphoma survivors Risk proportional to irradiation dose 		

5-FU = 5-fluorouracil; VEGF = vascular endothelial growth factor.

Arrhythmias

• ECG and QT interval at baseline

 Pts with history of QT prolongation, cardiac disease, use of QT prolonging drugs, bradycardia, thyroid disease, or electrolyte abnormalities – repeat EKGs

- Discontinue or alternative treatments if QTc >500 ms or prolonged
 > 60 ms
- Avoid hypokalemia and extreme bradycardia
- Limit exposure to other QT prolonging drugs if QT prolonging chemotherapy

Table 8 Cancer drug agents associated with cardiac arrhythmias

Type of arrhythmia	Causative drug				
Bradycardia	Arsenic trioxide, bortezomib, capecitabine, cisplatin, cyclophosphamide, doxorubicine, epirubicine, 5-FU, ifosfamide, IL-2, methotrexate, mitoxantrone, paclitaxel, rituximab, thalidomide.				
Sinus tachycardia	Anthracyclines, carmustine.				
Atrioventricular block	Anthracyclines, arsenic trioxide, bortezomib, cyclophosphamide, 5-FU, mitoxantrone, rituximab, taxanes, thalidomide.				
Conduction disturbances	Anthracyclines, cisplatin, 5-FU, imatinib, taxanes.				
Atrial fibrillation	Alkylating agents (cisplatin, cyclophosphamide, ifosfamide, melphalan), anthracyclines, antimetabolites (capecitabine, 5-FU, gemcitabine), IL-2, interferons, rituximab, romidepsin, small molecule TKIs (ponatinib, sorafenib, sunitinib, ibrutinib), topoisomerase II inhibitors (amsacrine, etoposide), taxanes, vinca alkaloids.				
Supraventricular tachycardias	Alkylating agents (cisplatin, cyclophosphamide, ifosfamide, melphalan), amsacrine, anthracyclines, antimetabolites (capecitabine, 5-FU, methotrexate), bortezomib, doxorubicin, IL-2, interferons, paclitaxel, ponatinib, romidepsin.				
Ventricular tachycardia/fibrillation	Alkylating agents (cisplatin, cyclophosphamide, ifosfamide), amsacrine, antimetabolites (capecitabine, 5-FU, gemcitabine), arsenic trioxide, doxorubicin, interferons, IL-2, methothrexate, paclitaxel, proteasome inhibitors (bortezomib, carfilzomib), rituximab, romidepsin.				
Sudden cardiac death	Anthracyclines (reported as very rare), arsenic trioxide (secondary to torsade de pointes), 5-FU (probably related to ischaemia and coronary spasm), interferons, nilotinib, romidepsin.				

5-FU = 5-fluorouracil; IL-2 = interleukin 2; TKI = tyrosine kinase inhibitor.

Table 10 Risk factors for QT prolongation in cancer

patients

aVI

Correctable	Non-correctable
Electrolyte imbalance • Nausea and emesis • Diarrhoea • Treatment with loop diuretics • Hypokalaemia (≤3.5 mEq/L) • Hypomagnesaemia (≤1.6 mg/dL) • Hypocalcaemia (≤8.5 mg/dL) Hypothyroidism Concurrent use of QT-prolonging drugs • Antiarrhythmic • Anti-infective • Antibiotic • Antibiotic • Antifungal • Psychotropic • Antidepressant • Antipsychotic • Antiemetic • Antiemetic • Antihistamine	 Family history of sudden death (occult congenital LQTS or genetic polymorphisms) Personal history of syncope Baseline QTc interval prolongation Female gender Advanced age Heart disease Myocardial infarction Impaired renal function Impaired hepatic drug metabolism

LQTS = long QT syndrome.

Zamorano, et al., *Eur Heart J* 2016;37:2768-2801.

V4

1/5

V6

Arterial Hypertension

- Treat according to clinical guidelines and monitor blood pressure
- Treat early and aggressively to prevent HF
- ACE or ARBs, beta blockers, and dihydropyridine calcium channel blockers are preferred. Avoid nondihydropyridine (verapamil/diltiazem) due to drug interactions (statins).
- Dose reduction or discontinuation of VEGF inhibitors can be considered if BP not controlled

Supplementary Table Most recent reviews and meta-analyses on the incidence of hypertension with major VEGF inhibitor treatment

Drug	Number of studies included	Number of patients	Incidence of all grades of HTN, %	Incidence of stage 3-4 HTN, %
Bevacizumab ¹⁶⁵	20	6754	23.6	7.9
Sunitinib ¹⁶⁷	13	4999	21.6	6.8
Sorafenib ¹⁶⁸	13	2492	15.3	4.4
Axitinib ¹⁶⁹	10	1908	40.1	13.1
Vandetanib ¹⁷⁰	П	3154	24.2	6.8
Regorafenib	5	750	44.4	12.5

HTN = hypertension; VEGF = vascular endothelial growth factor.

Other conditions and patients

- Valvular disease
- Thromboembolic disease
- Pulmonary hypertension
- Pericardial and pleural effusions
- Autonomic dysfunction
- Pediatric
- Elderly
- Pregnant

Table II Clinical factors associated with increased risk of cancer-associated venous thromboembolism (modified from Khorana et al.¹⁸²)

Cancer-related factors

- Primary site of cancer (mostly pancreas, brain, stomach, kidney, lung, lymphoma, myeloma)
- Histology (specially adenocarcinoma)
- · Advanced stage (metastatic)
- Initial period after cancer diagnosis

Patient-related factors

- · Demographics: older age, female sex, African ethnicity
- Comorbidities (infection, chronic kidney disease, pulmonary disease, atherothrombotic disease, obesity)
- · History of venous thromboembolism, inherited thrombophilia
- Low performance status

Treatment-related factors

- Major surgery
- Hospitalization
- · Chemotherapy and anti-angiogenic agents
- · Hormonal therapy
- Transfusions
- Central venous catheters

Treatment options to prevent or recover from myocardial dysfunction

- Identify and treat CV risk factors and comorbidities
- For QT prolongation avoid QT prolonging drugs and manage electrolytes
- For anthracyclines
 - Limit cumulative dose
 - Liposomal delivery
 - Dexrazoxane
- For trastuzumab
 - ACE inhibitors or beta-blockers

- ACE inhibitors, ARBs, or beta-blockers
- Statins
- Aerobic exercise

Table 14 Summarizes the potential benefits of exercise during and/or after cancer treatment

Improvement of:

- Cardiorespiratory and cardiovascular function
- Body composition (preservation or increase in muscle mass, loss of fat mass)
- Immune function
- Chemotherapy completion rates
- Muscle strength and flexibility
- Body image, self-esteem and mood

Reduction in:

- Number and severity of side effects including nausea, fatigue and pain
- Reduction of hospitalization duration
- Reduction of stress, depression and anxiety

Strategies for the future

- Refine the predisposing factors for development of CVD related to cancer treatment
- Evaluate the rate of subclinical LV dysfunction and its transition to overt HF
- Define the most reliable cardiac monitoring approach
- Determine the clinical effect and outcome after cancer therapy

ASCO Clinical Practice Guideline: Prevention and monitoring of cardiac dysfunction in survivors of adult cancers

Overarching clinical questions addressed in ASCO clinical practice guideline

1. Which pts. at increased risk of cardiac dysfunction?

- High dose anthracyclines ($\geq 250 \text{ mg/m}^2 \text{ dox or} \geq 600 \text{ mg/m}^2$)
- High dose RT (\geq 30 Gy) with heart in field
- Lower anthracyclines with RT with heart in field
- Lower dose anthracyclines or trastuzumab alone with:
 - Multiple (\geq 2) risk factors
 - ≥ 60 years
 - LVEF 50-55%, hx of MI, moderate valvular disease
- Lower dose anthracyclines \rightarrow trastuzumab
- No recommendation for trastuzumab alone, low dose anthracycline or RT, kinase inhibitors

2. & 3. Preventive strategies prior to and during Rx

- Avoid cardiotoxic therapies if alternatives exist
- H & P, screen and actively manage cardiac risk factors, ECHO
- Dexrazoxane, Liposomal doxorubicin, continuous infusion
- Mediastinal RT Deep inspiration breath holding or IMRT

4. & 5. Surveillance prior to and during Rx

- H & P
- Evaluate and manage cardiac risk factors
- If at increased cardiac risk ECHO with frequency to be determined by provider
 - Trastuzumab indefinitely: frequency of monitoring to be determine by provider
 - 6-12 months after completion of treatment
- If signs or symptoms of cardiac dysfunction
 - ECHO
 - If no ECHO, MRI or MUGA
 - Serial biomarkers (troponins, BNP)
 - ECHO derived strain imaging

- Referral to cardiologist
- No recommendation for continuing cancer tx

Cumulative incidence of cardiac events by baseline CVD risk factors in SWOG adjuvant breast cancer trials

Hershman, et al., *J Clin Oncol* 2018. Epub.

Cumulative incidence of cardiac events by baseline CVD risk factors in adjuvant breast cancer

RISK FACTORS:

- Diabetes w/ or w/o complications
- Hypertension
- Hypercholesterolemia
- •CAD
- •Obesity

Hershman, et al., J Clin Oncol 2018. Epub.

Table 6 Proposed diagnostic tools for the detection of cardiotoxicity

Technique	Currently available diagnostic criteria	Advantages	Major limitations
Echocardiography: - 3D-based LVEF - 2D Simpson's LVEF - GLS	 LVEF:>10 percentage points decrease to a value below the LLN suggests cardiotoxicity. GLS:>15% relative percentage reduction from baseline may suggest risk of cardiotoxicity. 	 Wide availability. Lack of radiation. Assessment of haemodynamics and other cardiac structures. 	 Inter-observer variability. Image quality. GLS: inter-vendor variability, technical requirements.
Nuclear cardiac imaging (MUGA)	 >10 percentage points decrease in LVEF with a value <50% identifies patients with cardiotoxicity. 	Reproducibility.	 Cumulative radiation exposure. Limited structural and functional information on other cardiac structures.
Cardiac magnetic resonance	Typically used if other techniques are non-diagnostic or to confirm the presence of LV dysfunction if LVEF is borderlines.	 Accuracy, reproducibility. Detection of diffuse myocardial fibrosis using T1/T2 mapping and ECVF evaluation. 	 Limited availability. Patient's adaptation (claustrophobia, breath hold, long acquisition times).
Cardiac biomarkers: - Troponin I - High-sensitivity Troponin I - BNP - NT-proBNP	 A rise identifies patients receiving anthracyclines who may benefit from ACE-Is. Routine role of BNP and NT-proBNP in surveillance of high-risk patient needs futher investigation. 	 Accuracy, reproducibility. Wide availability. High-sensitivity. 	 Insufficient evidence to establish the significance of subtle rises. Variations with different assays. Role for routine surveillance not clearly established.

Consensus from American Society of Echocardiography & European Association of Cardiovascular Imaging: Prefer 3D ECHO

- Type 1 CV toxicity: Anthracyclines
 - Baseline EF and > 53% repeat at completion of therapy and then 6 months
 - If < 53% cardiology consult</p>
- Type 2 CV toxicity: Trastuzumab
 - If > 53% EF every 3 mo during Rx
- Type 1 and 2 agents
 - If > 53% EF every 3 mo during Rx and 6 mo later

Expert Consensus on Multimodality Imaging Evaluation in Adults Patients During and After Cancer Therapy

* Consider confirmation with CMR.

** LLN = Lower limit of normal. Please refer to Plana et al., Table 5 for GLS values based on vendor, gender, and age. *** If the dose if higher than 240 mg/m² (or its equivalent), recommend measurement of LVEF, GLS, and troponin prior to each additional 50 mg/m²

Expert Consensus on Multimodality Imaging Evaluation in Adults Patients During and After Cancer Therapy

* Consider confirmation with CMR.

** LLN = Lower limit of normal. Please refer to Plana et al., Table 5 for GLS values based on vendor, gender, and age. *** If the dose if higher than 240 mg/m² (or its equivalent), recommend measurement of LVEF, GLS, and troponin prior to each additional 50 mg/m²

Expert Consensus on Multimodality Imaging Evaluation in Adults Patients During and After Cancer Therapy

* Consider confirmation with CMR.

** LLN = Lower limit of normal. Please refer to Plana et al., Table 5 for GLS values based on vendor, gender, and age. *** If the dose if higher than 240 mg/m² (or its equivalent), recommend measurement of LVEF, GLS, and troponin prior to each additional 50 mg/m²

ECHO surveillance: ASE & EACI

Mehta, et al., Circulation 2018;137:e30-e66.

Global Longitudinal Strain

- Strengths
 - -Superiority in predicting all cause mortality vs LVEF
 - -Improved risk stratification for HF
 - -Recognize early LV dysfunction
 - -Reproducible by trained operators
- Limitations
 - -Heavy dependence on quality of 2D images
 - -Influenced by loading
 - Lack of long term randomized trials to predict symptomatic HF or persistent decrease in LVEF
 - -Vendor and software specific

Strain Surveillance of Chemotherapy for improving Cardiovascular Outcomes (SUCCOUR) Trial:

Negishi, et al., JACC Cardiovasc Imaging 2018; Jun 8 (Epub ahead of print).

2017 U.S. FDA Package Inserts for Trastuzumab & Pertuzumab

- Trastuzumab: LVEF prior to therapy and every 3 months during Rx and at completion
 - Repeat q 4 weeks if withheld for \downarrow LVEF
 - − Stop if \geq 16% \downarrow LVEF; below LLN and \geq 10% \downarrow LVEF
 - Resume if LVEF WNL and $\downarrow \leq 15\%$
 - Every 6 months for 2 years after completion
- Pertuzumab and trastuzumab:
 - LVEF q 12 weeks for metastatic and adjuvant (once during neoadjuvant)

Dose Modifications for Left Ventricular Dysfunction

	Pre- treatment LVEF:	Monitor LVEF every:	Withhold PERJETA and trastuzumab for at least 3 weeks for an LVEF decrease to:		Resume PERJETA and trastuzumab after 3 weeks if LVEF has recovered to:		
			Either		Either	Either	
Metastatic Breast Cancer	≥ 50%	~12 weeks	<40%	40%-45% with a fall of ≥10%-points below pre- treatment value	>45%	40%-45% with a fall of <10%-points below pre- treatment value	
Early.	≥ 55%*	~12 weeks (once during neoadjuvant therapy)	<50% with a fall of ≥10%-points below pre- treatment value		Either		
Breast Cancer					≥50%	<10% points below pre- treatment value	

*For patients receiving anthracycline-based chemotherapy, a LVEF of \geq 50% is required after completion of anthracyclines, before starting PERJETA and trastuzumab

Perjeta ® [package insert]. South San Francisco: Genentech, Inc. 2017.

NCCN Clinical Practice Guidelines In Oncology (NCCN Guidelines[®])

Breast Cancer (Version 1.2018 – March 20, 2018)

- For treatment w/ trastuzumab or pertuzumab:
 - Evaluate LVEF prior to and during treatment.
 - The optimal frequency is not known. The FDA label recommends LVEF measurements prior to initiation of trastuzumab & q 3 mos. during tx.

Can we prevent cardiotoxicity and treat during it?

Primary Prevention of Cardiotoxicity

Trial	RX	Study	n	Results	p-value
PRADA ¹	Epirubicin	2x2		$CMR \downarrow LVEF$	
	Tras 12%	Candesartan + placebo	32	1.8% Can <i>v.</i> Pla	0.0026
		Candesartan + metoprolol	28		
		Metoprolol + placebo	32	0.2% Met <i>v.</i> Pla	0.772
		Placebo + placebo	33		
MANTICORE	Tras	1x1x1		CMR LVEDVi	LVEF
101 Breast ²		Perindopril	33	+7 p=.36	-3%
		Bisoprolol	31	+8 p=.36	-1% p=0.001
		Placebo	30	+4 p=.36	-5%
CECCY ³	Dox	1x1		LVEF >10%	
		Carvedilol	96	14.5%	1.00
		Placebo	96	13.5%	

¹ Gulati, et al., *Eur Heart J* 2016;37:1671;

² Pituskin, et al., *J Clin Oncol* 2016;35:870; ³ Avila, et al., *JACC* 2018;71:2281-90.

Reversibility of trastuzumab-related Cardiotoxicity and response to medical treatment

Ewer, et al., *J Clin Oncol* 2005;23:7820-7826.

SAFE HEaRt: A Pilot Study Assessing the Cardiac SAFEty of HER2 Targeted Therapy in Patients with HER2 Positive Breast Cancer & Reduced Left Ventricular Function (40-49%)

*Anti-HER2 Therapy = pertuzumab, trastuzumab, T-DM1

Filipa C. Lynce, MD Lombardi Comprehensive Cancer Center

Lynce, et al., Oncologist 2017;22:1-8; ClinicalTrials.gov: NCT01904903.

SAFE-HEaRt: Primary Endpoint

Demographics, previous anthracyclines and baseline LVEF did not predict development of CEs.

Elevation of highly sensitive troponin preceded 2 of 3 CEs which was significant (p=0.003).

Lynce, et al., *J Clin Oncol* 2018;36(15_suppl; abstr 1038).

So what do we do now?

- Screening with 3D Echo and follow up based on treatment
 - Anthracyclines baseline and after treatment (< 240 mg/m²)
 - Trastuzumab: Baseline and q 3months practically speaking if on long term trastuzumab and pertuzumab with LVEF wnl, consider stopping surveillance or decreasing to once every 6-12 months
- No evidence of benefit with BB or ARB or ACEi
- No routine measurement of troponins, BNP
- Global strain measurements could predict cardiac dysfunction but currently not in the mainstream for determining cardiac treatment

MedStar Heart & Vascular Institute Cardio-Oncology Program: Goals

- Ensures better outcomes for patients with cancer and cardiac issues
- Provides earlier detection of cardiac toxicity side effects from cancer treatments
- Aims to present or reduce further cardiac damage and, when possible, reverse it
- Monitors patients with potential cardiac issues who are receiving cancer treatments
- Provides a better understanding of cardiac issues in patients with cancer by participating in research studies
- Eliminates cardiac disease as a barrier to effective cancer therapy

My Friend and Mentor in Cardio-Oncology or is that Onco-Cardiology!

AR CONDITIONED