MASCC/ISOO 2018 ANNUAL MEETING VIENNA

Session: What Does the Future Hold? Prognostication in Advanced Cancer and Clinical Decision Making

Development and initial validation of a prognostic nomogram for ambulatory patients with advanced cancer

Paiva CE, Paiva BSR, Pântano NP, de Oliveira C, Yennurajalingam S, Hui D, Bruera E

Background

✓ Oncologists frequently face the difficult task of estimating prognosis in patients with incurable malignancies.

✓ Their prediction of prognosis informs decision making ranging from recommendations of cancer treatments to hospice enrollment Krishnan et al. J Support Oncol, 2013; 11(2):68-74

✓ CPS is often inaccurate and usually too optimistic, which may result in overly aggressive cancer treatment

White et al. PLoS One 11:e0161407 Amano et al. J Pain Symptom Manage 50:139–146

Background

 \checkmark Most of the studies describe a sample of patients with advanced disease, a low functional performance, and a short life expectancy.

Simmons et al. J Pain Symptom Manage 53:962–970

 \checkmark Few studies have evaluated the prognosis of outpatients with advanced cancer who are receiving anticancer treatment and concomitantly undergoing PC.

Aim

 \checkmark To develop and test a new prognostic tool in ACP when they were first referred to PC.

Methods

Design: prospective, observational study

Setting: Barretos Cancer Hospital (Barretos-SP, Brazil)

Development Phase

from Mar/2011 to Apr/2012 <u>Sample size:</u> a ratio of at least 1:10 between the number of events vs the number of predictors in the multivariate model (150 events)

Validation Phase

from Apr/2014 to Oct/2014

<u>Sample size:</u> proportion of correct answers of 80%; an absolute error = 5%, and a level of significance of 5% n = 246; 10% rate of lack of information, minimum of 270 pts

Methods (data collection)

Development sample

35 initial putative prognostic variables

- ✓ Patient characteristics (age, gender)
- ✓ Tumor characteristics (type , metastasis, treatment)
- ✓ Nutritional aspects (BMI, edema, ascitis, feeding tubes)✓ KPS
- ✓HRQOL indices (EORTC QLQ-C30)
- ✓ Cancer symptoms (ESAS),
- ✓ Blood samples (CBC, Calcium, LDH, Albumin, CRP)

Validation sample

Data regarding <u>patient characteristics</u>, <u>KPS</u>, and <u>blood samples</u> (complete blood count and serum albumin levels) were collected by the research nurses during the initial evaluation

Cox regression

analyses

Nomogram

Patients were followed until death.

 \succ Follow-up was terminated after reaching a predefined rate of at least 70% of deaths (development phase =155 from 221; validation phase = 194 from 276)

Development sample

✓ Univariate and multivariate Cox regression survival analyses.

 \checkmark All variables with p <0.2 were entered in the multivariate model (stepwise method).

✓ The final prognostic model was used to develop the BPN

✓ Nomogram function (rms package version 4.0) and the coxph function (Survival package version 2.37-4) of R statistical software version 2.15.1.

Validation sample

Validation	Analysis	Expected values
Discrimination	Survival analysis	Kaplan-Meier survival curves were constructed to compare survival according with BPN category
	ROC curve calculation	The BPN scores were used as continuous variables and the occurrence of death (yes/no) as a categorical variable in ROC curve analyses
	C-index	>0.5 = no discrimination; 1.0 = perfect discrimination between the expected and the observed outcomes
	Kolmogorov- Smirnov (K-S) goodness of fit	Measure the ability of BPN to discriminate between groups (alive vs death). According to the sample size, a value > 0.081 was expected
Calibration	Hosmer-Lemeshow goodness of fit	It evaluates the quality of fit of the model; adequate results should be nonstatistically significant ($P > .05$).

Results (construction of nomogram)

35 initial putative prognostic variables

Final model

Variables	B (SE)	Exp (B)	95% CI	<i>P</i> -value
Female	-0.373 (0.176)	0.689	0.488-0.972	.034
KPS	-0.030 (0.006)	0.971	0.959-0.982	<.001
Albumin	-0.966 (0.162)	0.380	0.277-0.522	<.001
Distant metastasis	0.587 (0.208)	1.799	1.196-2.706	.005
WBC count	0.086 (0.023)	1.089	1.042-1.139	<.001

Characteristics of patients in the training and validation cohorts

Characteristics	Training set (n=221)		Validation set (n=276)	
	Ν	%	Ν	%
Age (years)				
median (p25-p75)	61.0	52-70.5	60.2	52.6-69.4
Gender				
Woman	109	49.3	164	59.4
Man	112	50.7	112	40.6
Site of metastasis				
Lung (Yes)	59	26.7	92	33.3
Hepatic (Yes)	41	18.6	93	33.7
Bone (Yes)	62	28.1	102	37.0
Central nervous system (Yes)	15	6.8	26	9.4
KPS (score)				
median (p25-p75)	80	60-90	60	50-70

Results (construction of nomogram)

Case example

female (0 points), breast cancer with bone and lung metastasis (20 points), KPS=80% (24 points), WBC=8,125 (31,5 points), serum albumin=3.25 (57 points); total points =132.5.

Results (construction of nomogram)

Calibration and discrimination results of BPN

Characteristics	30 d	90 d	180 d
Cutoff scores	162	150	142
Area under the ROC curve	0.840	0.743	0.741
Sensitivity	78.4%	66.3%	66.7%
Specificity	74.9%	65.2%	69.4%
NPV	93.6%	75.3%	55.7%
PPV	42.5%	54.7%	78.3%
K-S	0.537	0.342	0.383
C-index	0.71 ^a	0.71 ^a	0.71 ^a
Hosmer-Lemeshow	<i>P</i> = .538	P = .580	P = .756

Overall survival curves according to BPN scores in validation sample.

Median survival times:

< 25th percentile = **313 days** 25th-75th percentile = **129 days** > 75th percentile = **37 days** ✓ The BPN is a new prognostic tool with adequate calibration and discrimination properties.

✓ Although it should be considered a valid tool to be used in the prognostication of adult patients with advanced solid tumors, its prognostic capacity is not ideal.

✓ Further strategies of prognostication and improvements in the BPN should be tested in future studies.

Research Perspectives

Future prospective studies are needed to:

✓ Compare the BPN with the other prognostic tools

✓ Test the feasibility of BPN in other clinical settings

✓ To create an online tool with results with probabilities of survival and survivals in best and worst case scenarios