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Figure 5.
Changes in number of unique TCR V-beta CDR3 sequences related to toxicity during the first 3 months of therapy with

tremelimumab.
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administer these types of reagents as therapeutics during

autoimmune disease progression.

Concluding remarks

PD-1 and CTLA-4 are critical regulators of T-cell function in

diverse processes ranging from autoimmunity, transplantation

tolerance, chronic viral infections, and tumor immunity. In vitro

and in vivo animal models as well as clinical trials have

demonstrated great therapeutic opportunities by effectively

targeting these pathways. T-cell activation is a complicated

biological process with several checkpoints and fail-safe pro-

cesses built in to limit aberrant or unfaithful T-cell activation,

including autoimmunity. T-cell signaling through CD28,

CTLA-4, and PD-1 controls complex but critical checkpoints

for T-cell activation and homeostasis. CD28 signaling induces a

balance of positive and negative signals establishing mechan-

isms for T-cell expansion and control. CTLA-4 is important for

limiting T-cell activity for cells early during the immune

responses. PD-1, on the other hand, limits T-cell activity in

peripheral tissues and may be the last chance to prevent T-cell

destruction of self-tissue resulting in autoimmunity (Fig. 1).

PD-1 and PD-L1 are also expressed on Tregs and may help

control their suppression of effector T cells. Recent studies

indicate that PD-L1 and PD-L2 can signal bi-directionally by

engaging PD-1 on T cells. PD-L1/PD-L2 signaling may aid in

protection from apoptosis and promote tumor cell growth. The

local environment of cytokines and costimulatory molecule

expression on professional APCs will be vital for dictating T-

helper outcomes. These pathways offer exciting new therapeu-

tic possibilities to selectively silence destructive T cells or
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Fig. 1. Peripheral tolerance mediated by negative regulators. This figure represents the differential effects for CTLA-4 and PD-1 for limiting T-cell
function during T-cell activation and the maintenance of peripheral tolerance. CTLA-4 and PD-1 are rapidly expressed following T-cell receptor
engagement and CD28 co-stimulatory signals. B7-1 and B7-2 are constitutively expressed in the lymph nodes at low levels on antigen-presenting cells
and upon activation are highly upregulated. PD-L1 and PD-L2 are constitutively expressed in peripheral tissue sites and upregulated in response to
inflammatory signals. The temporal and spatial patterns for ligand expression may help to explain the distinct differences between these two inhibitory
molecules. CTLA-4 blockade prevents tolerance induction and therefore may act in the earliest stages of immunity, particularly those within the
lymphatic system. PD-1 blockade acts in tissue sites to release anergic T cells and cause autoimmunity, suggesting the inhibitory functions are within the
target tissue. Therefore, PD-1 and CTLA-4 can play critical yet non-redundant roles in the maintenance of peripheral tolerance.
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reflecting a balanced immune response. While increased Th17
cells generally led to improved OS, Th1 associated with worse
OS across most immune subtypes, and Th2 orientation had
mixed effects (Figure 3C). Tumor types displayed two behaviors
relative to immune orientation (Figures 3B, OS; S3B, PFI). In the
first group including SKCM and CESC, activation of immune
pathways was generally associated with better outcome, while
in the other, the opposite was seen. The relative abundance of
individual immune cell types had complex associations that
differed between tumor types (Figures S3C and S3D). These an-
alyses extend beyond mere determination of lymphocyte pres-
ence to suggest testable properties that correlate with patient
outcome in different tumor types and immune contexts.

We obtained and validated a survival model using elastic-net
Cox proportional hazards (CoxPH) modeling with cross-valida-
tion. Low- and high-score tumors displayed significant survival
differences in the validation set (Figure 3D), with good prediction
accuracy (Figure 3E). Incorporating immune features into
Cox models fit with tumor type, stage, and tumor type + stage
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Figure 3. Immune Response and Prognostics
(A) Overall survival (OS) by immune subtype.

(B) Concordance index (CI) for five characteristic

immune expression signature scores (Figure 1A) in

relation to OS, for immune subtypes and TCGA tu-

mor types. Red denotes higher and blue lower risk,

with an increase in the signature score.

(C) CI for T helper cell scores in relation to OS within

immune subtypes.

(D) Risk stratification from elastic net modeling of

immune features. Tumor samples were divided into

discovery and validation sets, and an elastic net

model was optimized on the discovery set using

immune gene signatures, TCR/BCR richness, and

neoantigen counts. Kaplan-Meier plot shows the

high (red) and low (blue) risk groups from this model

as applied to the validation set, p < 0.0001 (G-rho

family of tests, Harrington and Fleming).

(E) Prediction versus outcome from elastic net model

in validation set data (fromD). Top: Patient outcomes

for each sample (black, survival; red, death) plotted

with vertical jitter, along the sample’s model pre-

diction (x axis). Middle: Fractional density of the

outcomes plotted against their model predictions.

Confidence intervals were generated by boot-

strapping with replacement. Bottom: LOESS fit of

the actual outcomes against the model predictions;

narrow confidence bands confirm good prediction

accuracy.

(F) CoxPHmodels of stage and tumor type (‘‘Tissue’’)

with (full model) or without (reduced model) the

validation set predictions of the elastic net model

were compared; the full model significantly out-

performed the reduced model in all comparisons

(p < 0.001; false discovery rate (FDR) BH-corrected).

See also Figure S3.

(Figure 3F) improved predictive accuracy,
highlighting the importance of the immune
TME in determining survival. Lymphocyte
expression signature, high number of
unique TCR clonotypes, cytokines made
by activated Th1 and Th17 cells, and M1

macrophages most strongly associated with improved OS (Fig-
ure S3E), while wound healing, macrophage regulation, and
TGF-b associated with worse OS, recapitulating survival associ-
ations in immune subtypes. Within tumor types, the prognostic
implications of immune subtypes seen in univariate analyses
were largely maintained, with C3 correlating with better OS in
six tumor types and C4 with poor OS in three cancer types
(Figure S3F).

Immune Response Correlates of Somatic Variation
The immune infiltrate was related to measures of DNA damage,
including copy number variation (CNV) burden (both in terms of
number of segments and fraction of genome alterations),
aneuploidy, loss of heterozygosity (LOH), homologous recombi-
nation deficiency (HRD), and intratumor heterogeneity (ITH) (Fig-
ure 4A). LF correlated negatively with CNV segment burden, with
strongest correlation in C6 and C2, and positively with
aneuploidy, LOH, HRD, and mutation load, particularly in C3.
These results suggest a differential effect of multiple smaller,
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Grade 3-4 treatment-related toxicities). Although many of these
were serious and required treatment, therapy discontinuation,
or hospitalization, the durable partial and complete responses
in melanoma may warrant this approach in some patients. In
particular, combination therapy appeared to most dramatically
benefit patients who were less likely to benefit from PD-L1 or
PD-1 inhibition alone, because their tumors were PD-L1-nega-
tive (6/13 PD-L1-positive and 9/22 PD-L1-negative patients re-
sponded to combination therapy; Wolchok et al., 2013). The
addition of a CTLA4-targeted therapy may be completing the
defect in the Cancer-Immunity Cycle for patients who are PD-
L1-negative. Further studies of preipilimumab and on ipilimumab
treatment tumor samples arewarranted to better understand this
effect.
Other combinations that merit serious consideration include

anti-PD-L1 or anti-PD-1 with vaccination, especially if it be-
comes possible to monitor a patient’s T cell profile to distinguish
individuals who have generated suboptimal T cell responses to
their cancers (Duraiswamy et al., 2013; Ge et al., 2013). In addi-
tion, combinations with agents that will enhance T cell trafficking
and infiltration into the tumor bed should be explored vigorously,
because the entry stepmay be important in some patients. In this

class, inhibition of VEGF by the anti-VEGF antibody bevacizu-
mab appears to be a promising candidate based on hints from
the preclinical and clinical literature (Motz and Coukos, 2013;
Hodi et al., 2010). Similarly, B-Raf inhibitors (vemurafenib) may
also enhance T cell infiltration into tumors (Liu et al., 2013). Of
course, with increased activity due to combinations comes the
increased chance for additive or synergistic toxicity. This further
highlights the importance of selecting therapeutic targets that
are specific to the ability of a tumor to escape immune eradica-
tion over targets thatmay also play an important role inmediating
immune homeostasis and preventing autoimmunity.

Concluding Remarks
The objective of understanding the inherent immune biology
related to cancer is to better define strategies to harness the
human immune response against cancer to achieve durable re-
sponses and/or complete eradication of cancer in patients
safely. Multiple approaches to cancer therapy exist, and few
are as complicated as immune-based therapy. Multiple numbers
of systemic factors can effect or contribute to the success or fail-
ure of immune therapy and lends to this complexity. Results may
be confounded by many currently unmeasured variables,

IFN-α

Figure 3. Therapies that Might Affect the Cancer-Immunity Cycle
The numerous factors that come into play in the Cancer-Immunity Cycle provide a wide range of potential therapeutic targets. This figure highlights examples of
some of the therapies currently under preclinical or clinical evaluation. Key highlights include that vaccines can primarily promote cycle step 2, anti-CTLA4 can
primarily promote cycle step 3, and anti-PD-L1 or anti-PD-1 antibodies can primarily promote cycle step 7. Although not developed as immunotherapies,
chemotherapy, radiation therapy, and targeted therapies can primarily promote cycle step 1, and inhibitors of VEGF can potentially promote T cell infiltration into
tumors—cycle step 5. Abbreviations are as follows: GM-CSF, granulocyte macrophage colony-stimulating factor; CARs, chimeric antigen receptors.
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