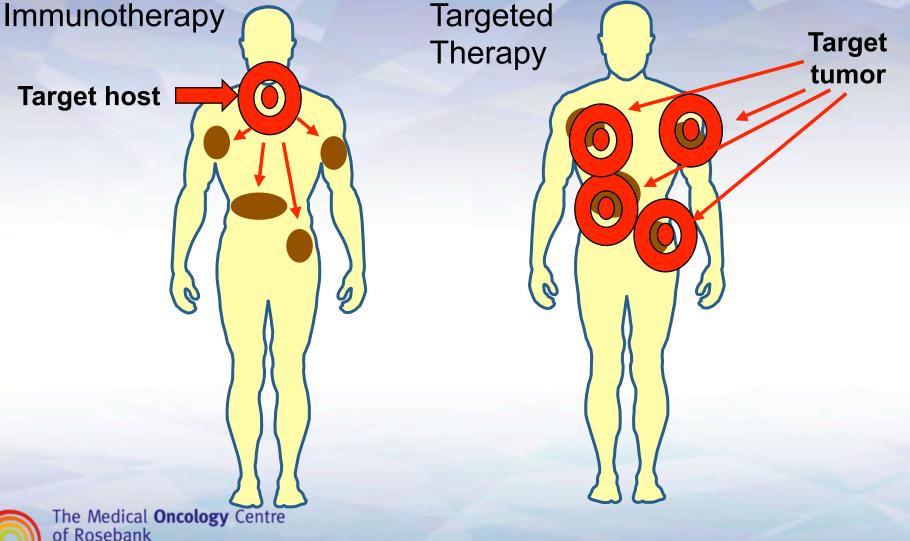
Update on the Recent Developments of Checkpoint Inhibitors

Bernardo Leon Rapoport ^{1,2}

¹ The Medical Oncology Centre of Rosebank, Johannesburg ² Department of Immunology, Faculty of Health Sciences, University of Pretoria

SOUTH AFRICA

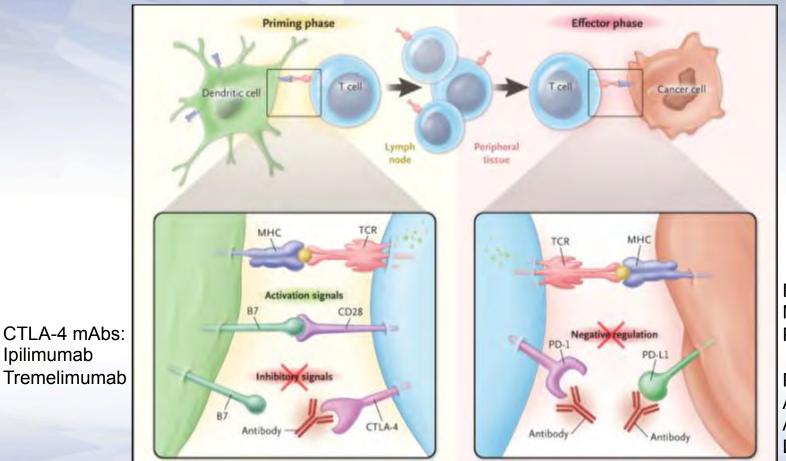
The Medical **Oncology** Centre of Rosebank


Disclosure

Company Name	Honoraria/ Expenses	Consulting/ Advisory Board	Contract Research	Funded Research	Royalties/ Patent	Stock Options	Ownershi p/ Equity Position	Employe e	Other (please specify)
Merck & Co., Inc	x	x	х						Speakers' bureau
Roche	x	x		х					Speakers' bureau
Sandoz	x	х		х					
Tesaro	x	x	х	x					Speakers' bureau
Teva	x	x							Speakers' bureau
Heron Therapeutics	x	x							
BMS South Africa	x	x	x	X					Speakers' bureau
Novartis South Africa	x	x	х						Speakers' bureau
Amgem South Africa	x	x	x						Speakers' bureau
Bayer South Africa	x	x	х						Speakers' bureau
Merck Serono S.Africa	x	x							
Astellas South Africa	x	x							Speakers' bureau
Sanofi Aventis S. Africa	x	х							
Astra Zeneca S. Africa	x	x							Speakers' bureau
Eli-Lilly South Africa			x						
J & J South Africa	Х	Х							Speakers' bureau

The Medical **Oncology** Centre of Rosebank

Two Paradigms for Advancing the Therapy of Metastatic Melanoma


CTLA-4 and PD-1/PD-L1 Checkpoint Blockade for Cancer Treatment

- Immune checkpoint blockade includes agents targeting the negative regulators CTLA-4 and PD-1
- CTLA-4 attenuates the early activation of naive and memory T cells in the lymph nodes
 - Agents targeting CTLA-4 include ipilimumab and tremelimumab
- In contrast, PD-1 modulates the effector phase of T cell activity in peripheral tissues via interaction with PD-L1 and PD-L2
 - Agents targeting PD-1 include nivolumab and pembrolizumab
 - Agents targeting PD-L1 include atezolizumab, avelumab, durvalumab

The Medical **Oncology** Centre of Rosebank

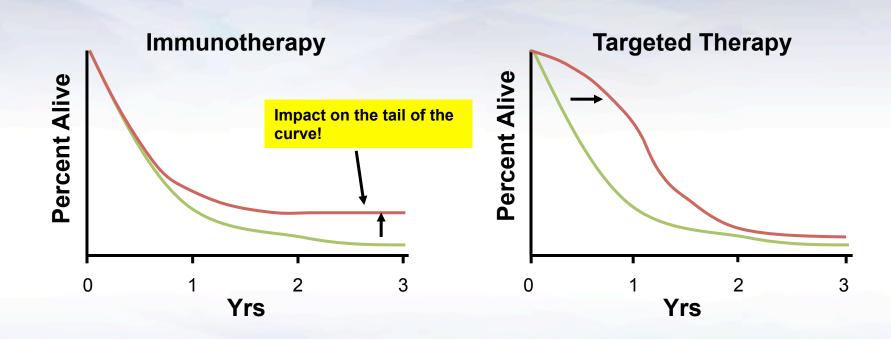
CTLA-4 and PD-1/PD-L1 Checkpoint Blockade for Cancer Treatment

PD-1 mAbs: Nivolumab Pembrolizumab

PD-L1 mAbs: Atezolizumab Avelumab Durvalumab

Ipilimumab

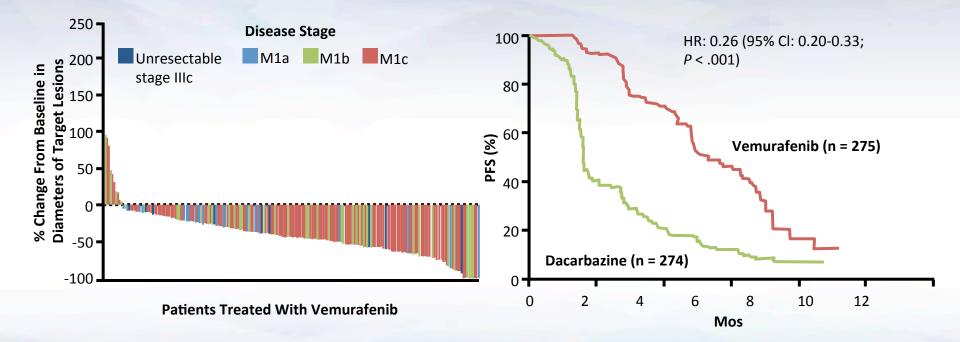
The Medical Oncology Centre of Rosebank


Potential Differences in PD-1 vs PD-L1 Blockade

- Anti-PD-1 and anti-PD-L1 antibodies may have different effects due to distinct mechanisms of action in the inhibitory pathway
- Anti-PD-1 antibodies:
 - Block PD-1 binding to PD-L1 and PD-L2
 - Do not block binding of PD-L1 to B7.1
- Anti-PD-L1 antibodies:
 - Block PD-L1 binding to PD-1 and B7.1
 - Do not block binding of PD-1 to PD-L2

The Medical **Oncology** Centre of Rosebank

Response Patterns for Immunotherapy Compared With Targeted Therapy



The Medical **Oncology** Centre of Rosebank

Personalised Cancer Care

Ribas A, et al. Clin Cancer Res. 2012;18:336-341.

BRIM-3 Phase III Study of Vemurafenib vs DTIC in Melanoma: Response and PFS

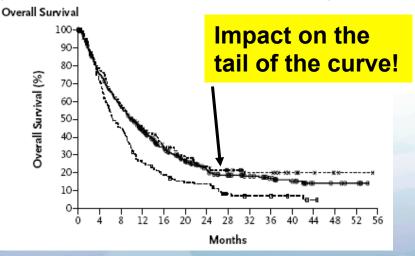
The Medical **Oncology** Centre of Rosebank

Personalised Cancer Care

Chapman PB, et al. N Engl J Med. 2011;364:2507-2516.

Ipilimumab

The major benefit is in durable tumor regressions

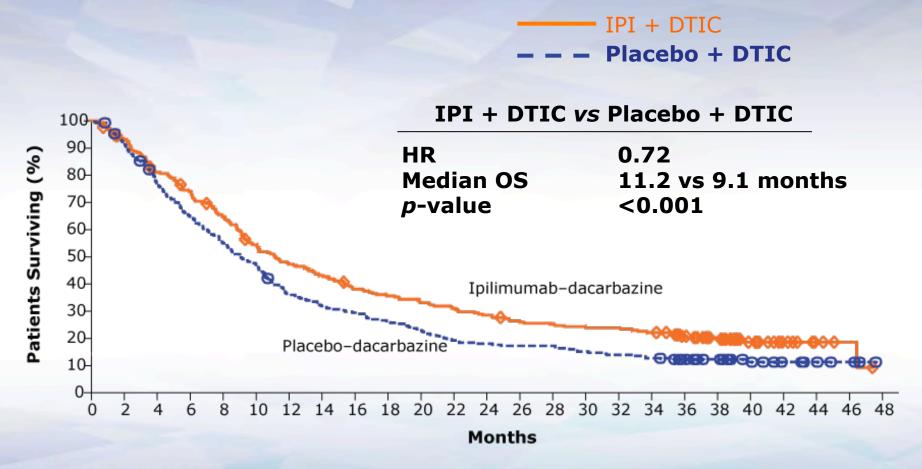

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Improved Survival with Ipilimumab in Patients with Metastatic Melanoma

F. Stephen Hodi, M.D., Steven J. O'Day, M.D., David F. McDermott, M.D., Robert W. Weber, M.D., Jeffrey A. Sosman, M.D., John B. Haanen, M.D., Rene Gonzalez, M.D., Caroline Robert, M.D., Ph.D., Dirk Schadendorf, M.D., Jessica C. Hassel, M.D., Wallace Akerley, M.D.,

Alfons J.M. van den Eertwegh, M.D., Ph.D., Jose Lutzky, M.D., Paul Lorigan, M.D., Julia M. Vaubel, M.D., Gerald P. Linette, M.D., Ph.D., David Hogg, M.D.,
Christian H. Ottensmeier, M.D., Ph.D., Celeste Lebbé, M.D., Christian Peschel, M.D., Ian Quirt, M.D., Joseph I. Clark, M.D., Jedd D. Wolchok, M.D., Ph.D., Jeffrey S. Weber, M.D., Ph.D., Jason Tian, Ph.D., Michael J. Yellin, M.D.,
Geoffrey M. Nichol, M.D., Axel Hoos, M.D., Ph.D., and Walter J. Urba, M.D., Ph.D.



The Medical **Oncology** Centre of Rosebank Personalised Cancer Care

6

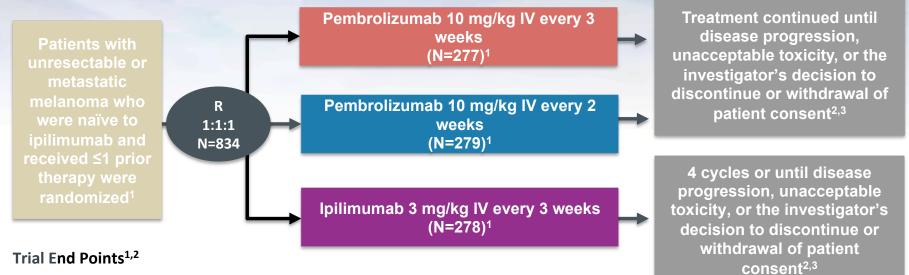
Study 024: Overall Survival

The Medical **Oncology** Centre of Rosebank

Personalised Cancer Care

Robert C et al. N Engl J Med 2011; Copyright © 2011 Massachusetts Medical Society.

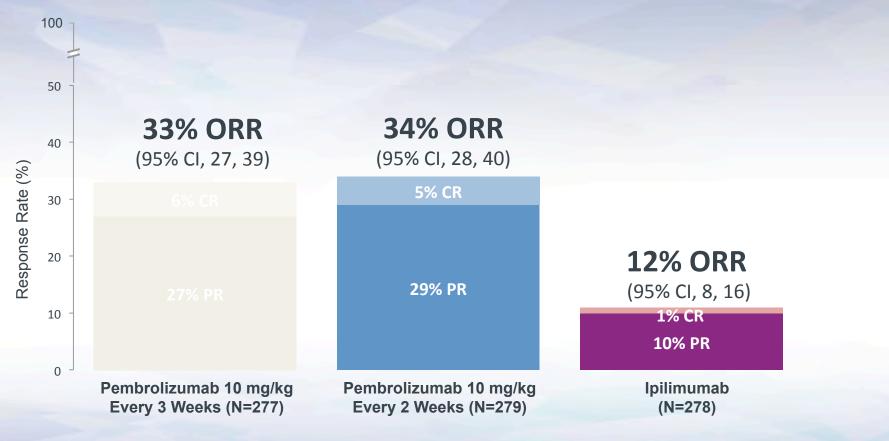
Select Adverse Events and Immune-Related Adverse Events


All Adverse Events, Regardless		DTIC 247)	Placebo + DTIC (n=251)	
of Cause	Total	Gr 3/4	Total	Gr 3/4
Diarrhea	36.4%	4.0%	24.7%	0
Rash	24.7%	1.2%	6.8%	0
Increased AST	29.1%	18.2%	5.6%	1.2%
Increased ALT	33.2%	21.9%	5.6%	0.8%
Immune-Related Adverse Events				
Increased AST	26.7%	17.4%	3.2%	0.4%
Increased ALT	29.1%	20.7%	4.4%	0.8%
Immune-Related Adverse Events Increased AST	26.7%	17.4%	3.2%	0.4%

The Medical **Oncology** Centre of Rosebank

KEYNOTE-006: Pembrolizumab vs Ipilimumab

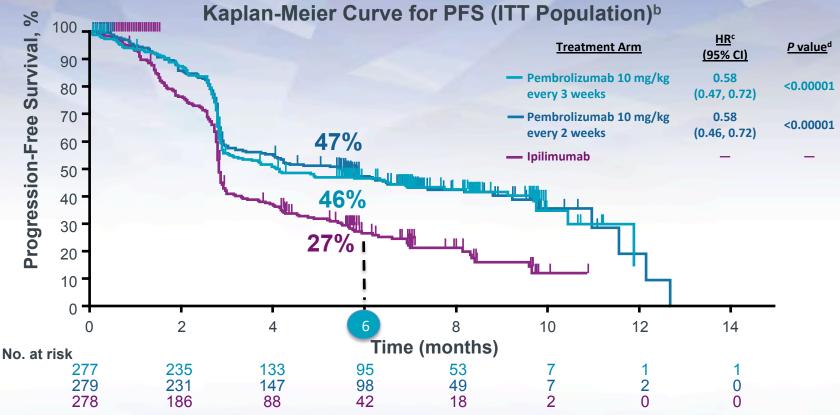
 Open-label, multicenter, randomized, controlled, phase 3 trial included patients with unresectable or metastatic melanoma who were naïve to ipilimumab and received no or one prior systemic therapy¹


- Primary: PFS as assessed by IRO review using RECIST version 1.1 and OS
 - PFS was assessed at first interim analysis. All patients were followed for at least 6 months^b
 - OS was assessed at second interim analysis. All patients were followed for at least 9 months or when the minimum follow-up duration was 12 months, whichever occurred first^c
- Selected Secondary: ORR

The Medical **Oncology** Centre of Rosebank

KEYNOTE-006: Overall Response Rate With Pembrolizumab

Greater ORR with pembrolizumab10 mg/kg every 3 weeks vs ipilimumab^{1,a,b}

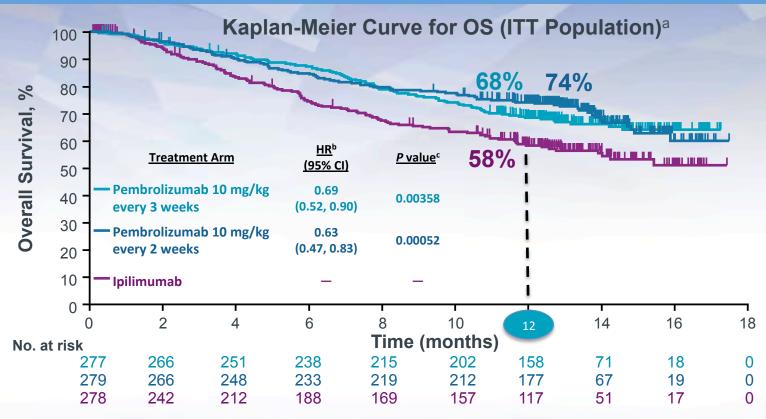


Analysis cutoff date: 3 September 2014.

The Medical **Oncology** Centre of Rosebank

KEYNOTE-006: Estimated PFS With Pembrolizumab

- 42% reduction in the risk of death with pembrolizumab10 mg/kg every 3 weeks vs ipilimumab
- 42% reduction in the risk of death with pembrolizumab10 mg/kg every 2 weeks vs ipilimumab Analysis cutoff date: 3 September 2014.



The Medical **Oncology** Centre of Rosebank

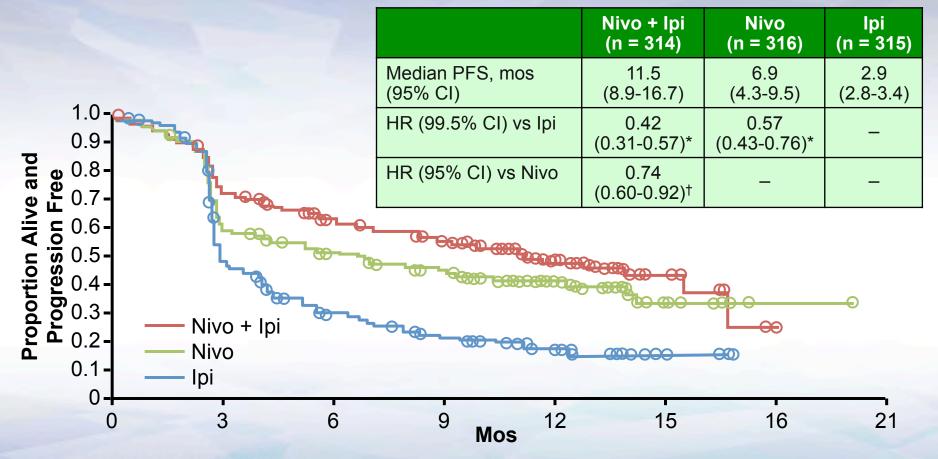
Personalised Cancer Care

Robert C et al, for the KEYNOTE-006 investigators. N Engl J Med. 2015;372(26):2521-25324

KEYNOTE-006: Estimated OS With Pembrolizumab

- 31% reduction in the risk of death with KEYTRUDA 10 mg/kg every 3 weeks vs ipilimumab
- 37% reduction in the risk of death with KEYTRUDA 10 mg/kg every 2 weeks vs ipilimumab
- The recommended dose of KEYTRUDA is 2 mg/kg every 3 weeks¹

Analysis cutoff date: 3 March 2015.

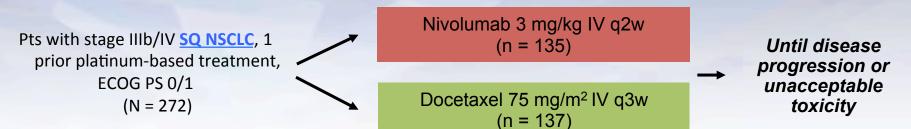


The Medical **Oncology** Centre of Rosebank

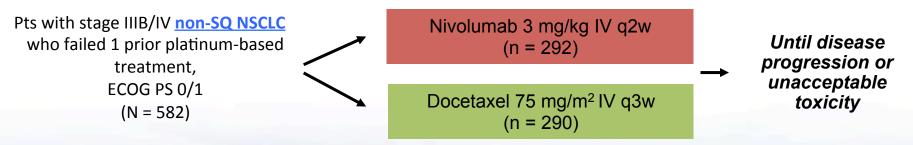
Personalised Cancer Care

Robert C et al, for the KEYNOTE-006 investigators. N Engl J Med. 2015;372(26):2521-25325

CheckMate 067: Improved PFS with Nivo + Ipi or Nivo Alone vs Ipi Alone


The Medical **Oncology** Centre of Rosebank

Personalised Cancer Care

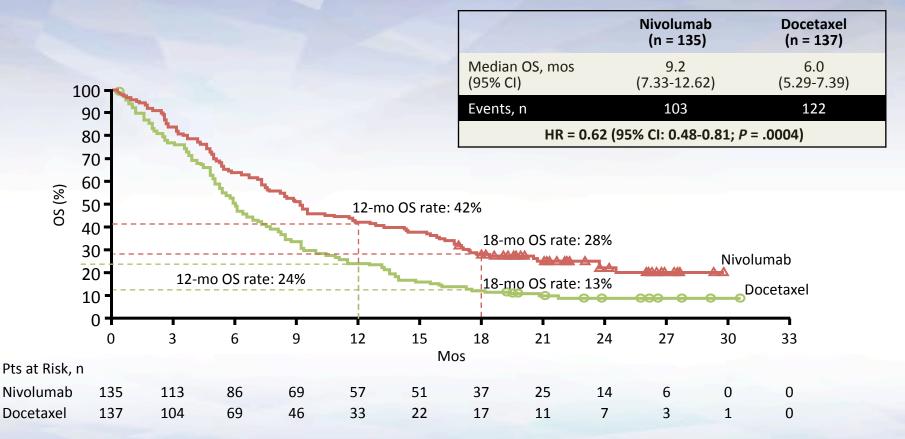

Wolchok JD, et al. ASCO 2015. Abstract LBA1. Reprinted with permission.

Nivolumab vs Docetaxel in Previously Treated Advanced NSCLC: Phase III Trials

CheckMate 017^[1]

CheckMate 057^[2]

Primary endpoint (both trials): OS



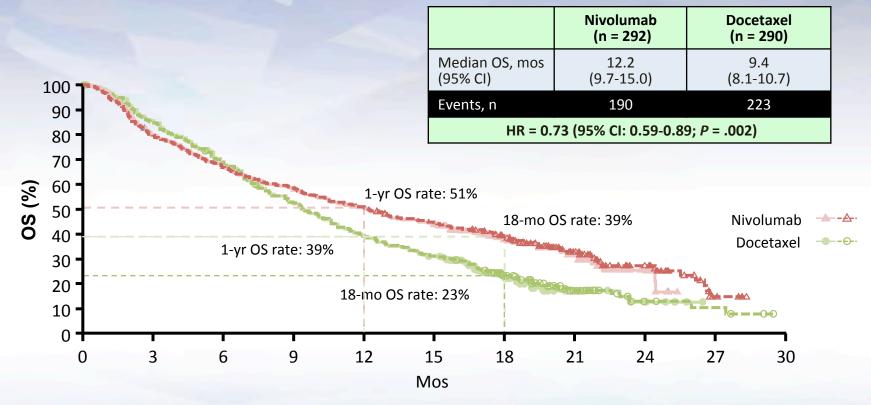
The Medical **Oncology** Centre of Rosebank

Personalised Cancer Care

Brahmer J, et al. N Engl J Med. 2015;373:123-135.
 Borghaei H, et al. N Engl J Med. 2015;373:1627-1639.

Nivolumab vs Docetaxel in Advanced SQ NSCLC (CheckMate 017): OS

Minimum follow-up for survival: 18 mos



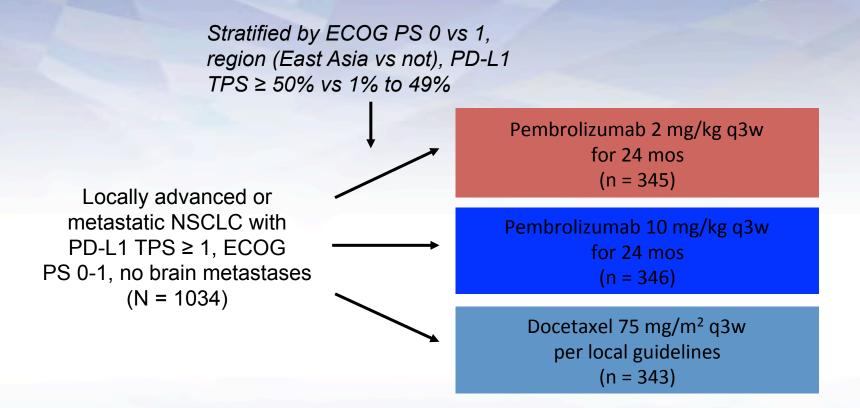
The Medical **Oncology** Centre of Rosebank

Personalised Cancer Care

Reckamp K, et al. WCLC 2015. ORAL02.01.

Nivolumab vs Docetaxel in Advanced Non-SQ NSCLC (CheckMate 057): OS

Minimum follow-up for 12-mo OS rate: 13.2 mos; for 18-mo OS rate: 17.1 mos



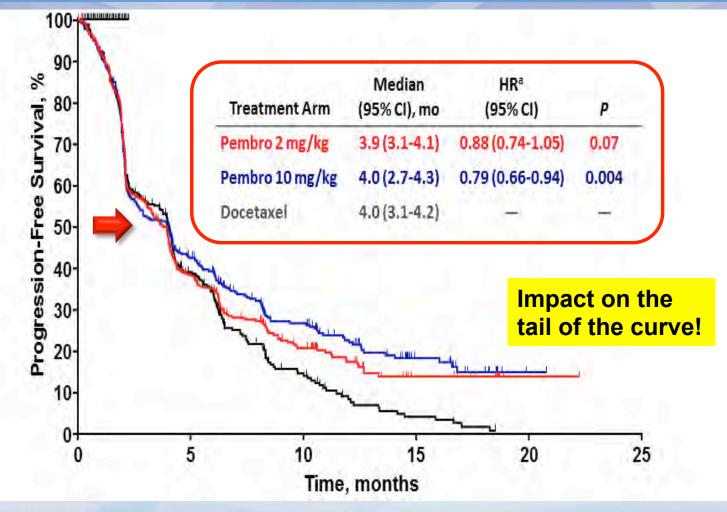
The Medical **Oncology** Centre of Rosebank

Personalised Cancer Care

Horn L, et al. ESMO 2015. Abstract 3010. Borghaei H, et al. N Engl J Med. 2015;373:1627-1639.

Pembro vs Doc in Previously Treated PD-L1+ Advanced NSCLC (KEYNOTE-010)

- Primary endpoints*: PFS, OS
- Secondary endpoints*: ORR, DoR, safety

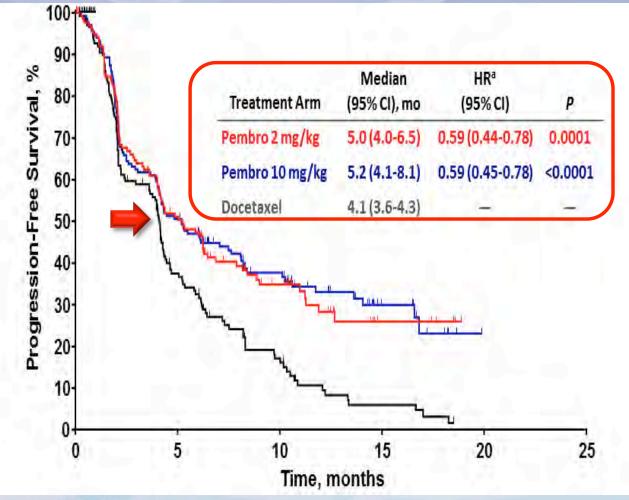


The Medical **Oncology** Centre of Rosebank

Personalised Cancer Care

*In both the PD-L1 TPS \geq 1% and \geq 50% populations.

PFS (RECIST v1.1, Central Review) PD-L1 TPS ≥ 1%


The Medical **Oncology** Centre of Rosebank

Improved Quality of Response With Higher PD-L1 Level

The Medical **Oncology** Centre of Rosebank

PFS (RECIST v1.1, Central Review) PD-L1 TPS ≥ 50%

The Medical **Oncology** Centre of Rosebank

KEYNOTE-024: Select Adverse Events

Adverse event,		olizumab • 154)	Chemotherapy (N = 150)				
n (%)	All grades	Grade ≥3	All grades	Grade ≥3			
Diarrhea	22 (14.3)	6 (3.9)	20 (13.3)	2 (1.3)			
Fatigue	16 (10.4)	2 (1.3)	43 (28.7)	5 (3.3)			
Pyrexia	16 (10.4)	0	8 (5.3)	0			
Immune-mediated adverse event							
Any	45 (29.2)	15 (9.7)	7 (4.7)	1 (0.7)			
Pneumonitis	9 (5.8)	4 (2.6)	1 (0.7)	1 (0.7)			
Severe skin reaction	6 (3.9)	6 (3.9)	0	0			
Colitis	3 (1.9)	2 (1.3)	0	0			

The Medical **Oncology** Centre of Rosebank

Personalised Cancer Care

Reck M et al. N Engl J Med 2016;375(19):1823-33.

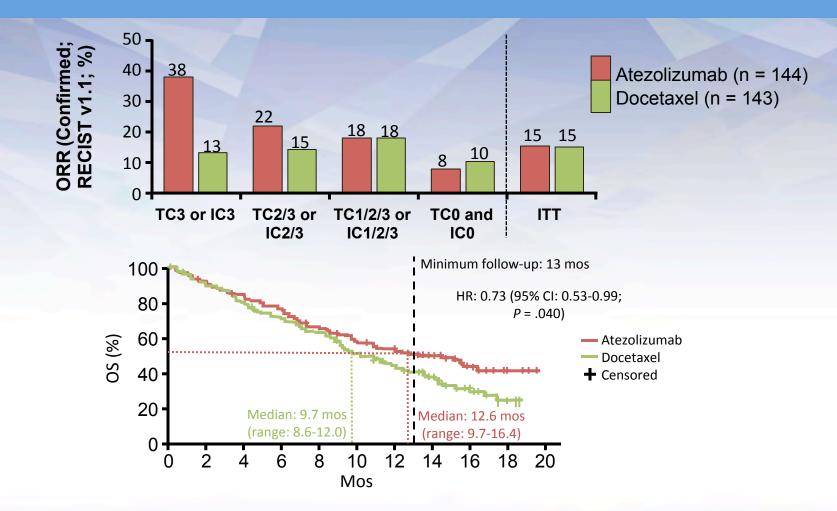
Atezolizumab vs Docetaxel in NSCLC (POPLAR): All-Comer Phase II Study

Stratified by PD-L1 IHC expression (0 vs 1 vs 2 vs 3), histology (squamous vs nonsquamous), prior chemotherapy regimens (1 vs 2)

Metastatic or locally advanced NSCLC (2L/3L), PD on prior platinum-based treatment (N = 287) Atezolizumab 1200 mg IV q3w until loss of clinical benefit (n = 144)

> Docetaxel 75 mg/m² IV q3w until PD (n = 143)

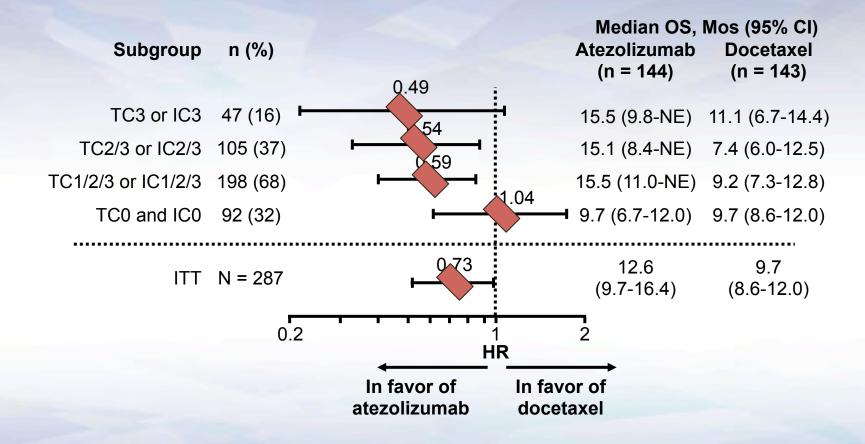
- Primary objective
 - Estimate OS by PD-L1 expression
- Secondary objectives
 - Estimate PFS, ORR, DoR by PD-L1 expression
 - Evaluate safety



The Medical **Oncology** Centre of Rosebank

Personalised Cancer Care

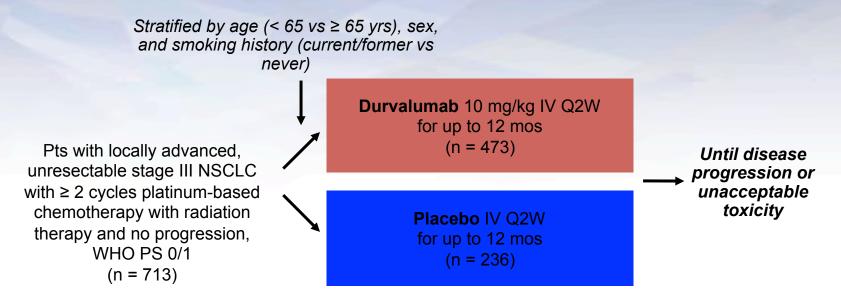
Fehrenbacher L, et al. Lancet. 2016. [epub ahead of print].


POPLAR: ORR and OS

• Event/pt ratio: 60% (54% for atezolizumab, 66% for docetaxel)

Spira AI, et al. ASCO 2015. Abstract 8010. Fehrenbacher L, et al. Lancet. 2016. [epub ahead of print].

POPLAR: OS by PD-L1 Expression


The Medical **Oncology** Centre of Rosebank

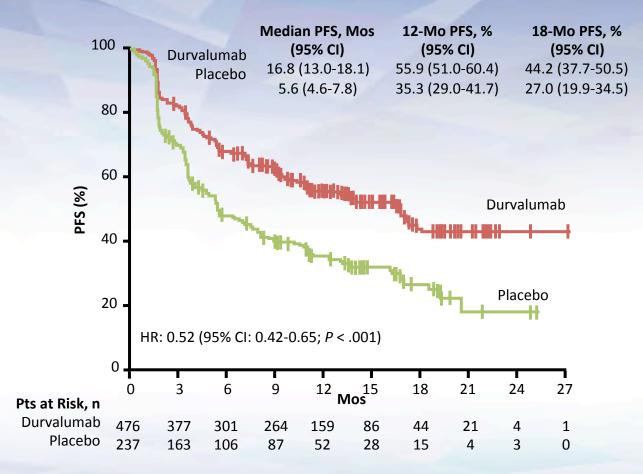
Personalised Cancer Care

Vansteenkiste J, et al. ESMO 2015. Abstract 14LBA. Fehrenbacher L, et al. Lancet. 2016. [epub ahead of print]

PACIFIC: Durvalumab vs Placebo After Concurrent CRT in Unresectable Stage III NSCLC

Interim analysis of international, randomized, double-blind, placebo-controlled phase III trial

- Primary endpoints
 - PFS: ≥ 95% power for detecting HR of 0.67 with 458 events
 - OS: 85% power for detecting HR of 0.73 with 491 events



The Medical **Oncology** Centre of Rosebank

Personalised Cancer Care

Antonia SJ, et al. N Engl J Med. 2017;377:1919-1929.

PACIFIC: PFS by BICR in ITT Population (Primary Endpoint)

The Medical **Oncology** Centre of Rosebank

Personalised Cancer Care

Antonia SJ, et al. N Engl J Med. 2017;377:1919-1929.

PACIFIC

Event	Durvalumat	b (N=475)	Placebo (N=234)				
	Any Grade*	Grade 3 or 4	Any Grade*	Grade 3 or 4			
	number of patients with event (percent)						
Any event	460 (96.8)	142 (29.9)	222 (94.9)	61 (26.1)			
Cough	168 (35.4)	2 (0.4)	59 (25.2)	1 (0.4)			
Pneumonitis or radiation pneumonitis†	161 (33.9)	16 (3.4)	58 (24.8)	6 (2.6)			
Fatigue	113 (23.8)	1 (0.2)	48 (20.5)	3 (1.3)			
Dyspnea	106 (22.3)	7 (1.5)	56 (23.9)	6 (2.6)			
Diarrhea	87 (18.3)	3 (0.6)	44 (18.8)	3 (1.3)			
Pyrexia	70 (14.7)	1 (0.2)	21 (9.0)	0			
Decreased appetite	68 (14.3)	1 (0.2)	30 (12.8)	2 (0.9)			
Nausea	66 (13.9)	0	31 (13.2)	0			
Pneumonia	62 (13.1)	21 (4.4)	18 (7.7)	9 (3.8)			
Arthralgia	59 (12.4)	0	26 (11.1)	0			
Pruritus	58 (12.2)	0	11 (4.7)	0			
Rash	58 (12.2)	1 (0.2)	17 (7.3)	0			
Upper respiratory tract infection	58 (12.2)	1 (0.2)	23 (9.8)	0			
Constipation	56 (11.8)	1 (0.2)	20 (8.5)	0			
Hypothyroidism	55 (11.6)	1 (0.2)	4 (1.7)	0			
Headache	52 (10.9)	1 (0.2)	21 (9.0)	2 (0.9)			
Asthenia	51 (10.7)	3 (0.6)	31 (13.2)	1 (0.4)			
Back pain	50 (10.5)	1 (0.2)	27 (11.5)	1 (0.4)			
Musculoskeletal pain	39 (8.2)	3 (0.6)	24 (10.3)	1 (0.4)			
Anemia	36 (7.6)	14 (2.9)	25 (10.7)	8 (3.4)			

The Medical **Oncology** Centre of Rosebank

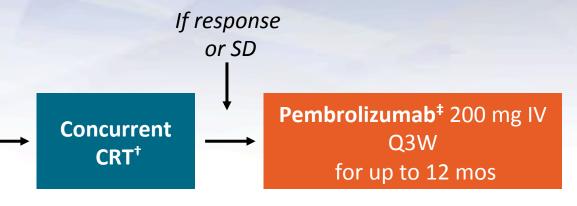
PACIFIC: PFS by BICR in ITT Population (Primary Endpoint)

- Durvalumab is now an FDA-approved option for stage III unresectable NSCLC after chemoradiation
 - HR 0.52
 - PFS 16.8 vs 5.8 mo
 - OS data not yet available
- Patient selection
- Toxicity assessment and management

The Medical **Oncology** Centre of Rosebank

Agent	Phase	Number (n)	Primary endpoints	Immunotherapy timing	Register	Sponsor	Dosage
Durvalumab	111	713	OS/PFS	1–42 days after CRT	PACIFIC [ClinicalTrials. gov identifier: NCT 02125461]	AstraZeneca	10 mg/kg IV every 2 weeks for 12 months
Nivolumab	111	660*	05/PFS	4–12 weeks after CRT	RTOG 3505 [ClinicalTrials. gov identifier: NCT 02768558]	RTOG	240 mg IV every 2 weeks for 12 months
Pembrolizumab	ii.	93	OS/PFS	4–7 weeks after CRT	[ClinicalTrials. gov identifier: NCT 02343952]	Hoosier Group	200 mg IV every 3 weeks for 12 months
Pembrolizumab	1	302	Safety	G1: 2-6 weeks after CRT G2: 2 weeks before the end of CRT G3: at start of CRT	[ClinicalTrials. gov identifier: NCT 02621398]	Rutgers	200 mg IV every 3 weeks for 54 weeks
Atezolizumab	11	405	Safety/ timing	4 weeks after CRT (one group receives one dose of atezolizumab in this interval)	[ClinicalTrials. gov identifier: NCT 02525757]	MD Anderson	1200 mg IV every 3 weeks, twice concurrent with two additional cycles of chemotherapy, then atezolizumab alone up to 12 months
Nivolumab	П	78 ^s	Safety	Concurrent from start of RT	NICOLAS [EudraCT 2014- 005097-11]	ETOP	360 mg IV every 3 weeks for four cycles then 480 mg IV every 4 weeks, total 12 months

Table 1. Reported (PACIFIC) or ongoing trials with immune checkpoint inhibitor immunotherapy in patients with unresectable stage III non-small cell lung cancer (NSCLC).



*Trial currently on hold with 13 patients included. *Trial still recruiting patients. CRT, concurrent chemoradiotherapy: ETOP, European Thoracic Oncology platform; G1, group/cohort 1; G2, group/cohort 2; G3, group/cohort 3; IV, intravenous; OS, overall survival; PFS, progression-free survival; RT, radiotherapy; RTOG, Radiation Therapy Oncology Group.

LUN 14-179: Study Design

Multicenter, single-arm phase II trial

Patients with unresectable stage III NSCLC; ECOG PS 0/1; no autoimmune disease or need for immunosuppressive agents/chronic systemic corticosteroids; no history of pneumonitis, interstitial lung disease needing corticosteroids (N = 93*)

*92 patients evaluable for efficacy. [†]Cis/etop, carbo/pac, or cis/ pemetrexed + radiation at 59.4-66.6 Gy. Consolidation CT up to 2 cycles allowed. [‡]Median number of cycles: 13.5 (range: 1-19).

- Primary endpoint: time to metastatic disease or death
- Secondary endpoints: PFS, OS, safety

The Medical **Oncology** Centre of Rosebank

LUN 14-179: Safety

Any-Grade AE in ≥	Patients (N = 93)						
10% of Patients,* ⁺ n (%)	Any Grade	Grade 2	Grade 3				
Fatigue	43 (46.2)	15 (16.1)	4 (4.3)				
Cough	24 (25.8)	16 (17.2)	1 (1.1)				
Dyspnea	20 (21.5)	10 (10.8)	5 (5.4)				
Anorexia	16 (17.2)	3 (3.2)	1 (1.1)				
Arthralgia	14 (15.1)	7 (7.5)	1 (1.1)				
Diarrhea	14 (15.1)	3 (3.2)	4 (4.3)				
Nausea	13 (14.0)	3 (3.2)	1 (1.1)				
Rash	12 (12.9)	3 (3.2)	1 (1.1)				
Pruritus	10 (10.8)	3 (3.2)	0				

*Excluding pneumonitis. [†]No grade 4 AEs reported.

40 (43.5%) patients completed 1 yr of treatment

The Medical **Oncology** Centre of Rosebank

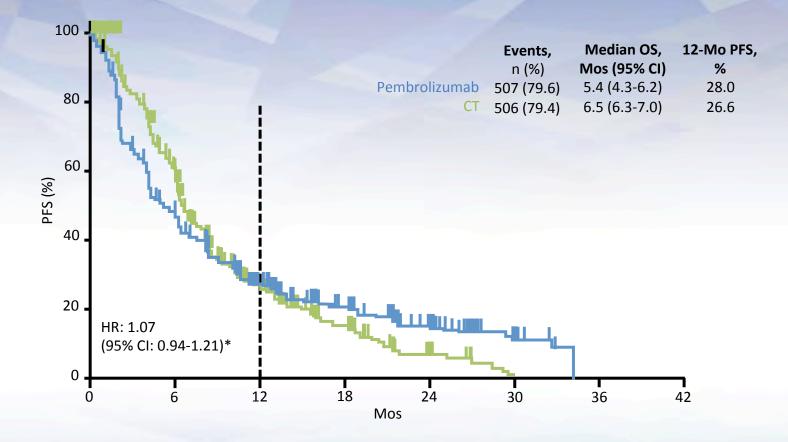
LUN 14-179 Other Key Toxicities, Including Pneumonitis

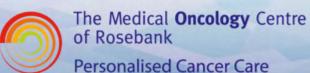
AE,*† n (%)	Patients (N = 93)			
AE, 1 (%)	Any Grade	Grade 2		
Colitis	2 (2.2)	2 (2.2)		
Increased creatinine	5 (5.4)	1 (1.1)		
Elevated AST	2 (2.2)	0		
Hyperthyroidism	7 (7.5)	2 (2.2)		
Hypothyroidism	7 (7.5)	6 (6.5)		

*Excluding pneumonitis. [†]No grade 3/4 AEs reported.

The Medical **Oncology** Centre of Rosebank

Grade ≥ 2 pneumonitis developed in 16 (17.2%) patients


Grade 2, n = 10 (10.8%); grade
 3,


n = 4 (4.3%); grade 4, n = 1 (1.1%); grade 5 leading to death, n = 1 (1.1%)

- Median time to grade ≥ 2 pneumonitis: 8.4 wks (range: 1.1-48.3)
- 75% of grade ≥ 2 pneumonitis cases developed within first 12 wks of pembrolizumab treatment

KEYNOTE-042: First-line Pembrolizumab vs Platinum-Based Chemotherapy for Advanced or Metastatic NSCLC With PD-L1 TPS ≥ 1%

KEYNOTE-042: PFS in PD-L1 TPS ≥ 1% Population

Lopes G, et al. ASCO 2018. Abstract LBA4.

KEYNOTE-042: OS in PD-L1 TPS ≥ 50% and ≥ 20% Populations (Primary Endpoint)

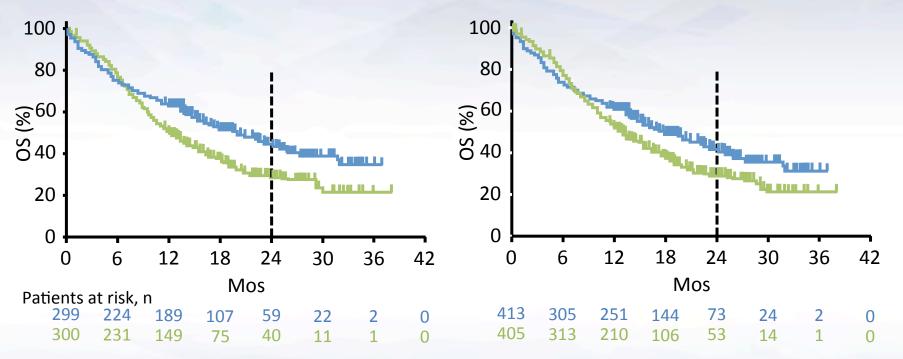
PD-L1 TPS \geq 50%

 Events,
 Median OS,
 24-Mo OS,

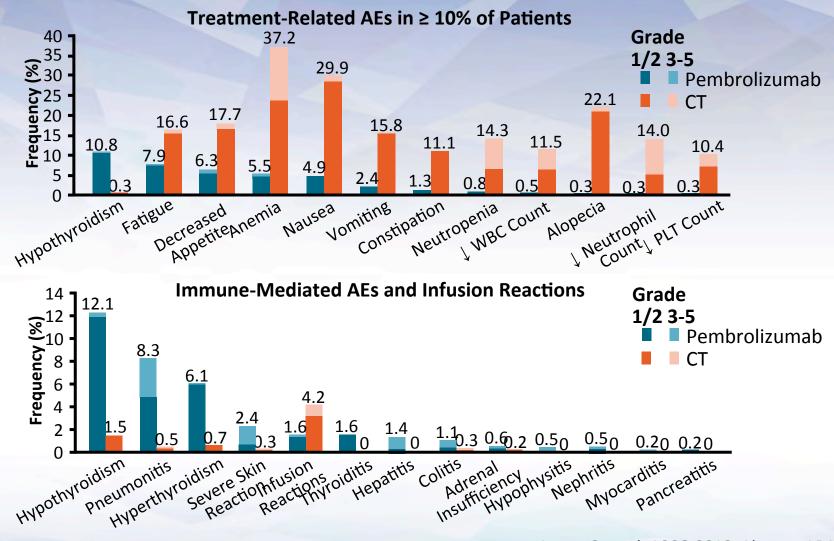
 n (%)
 Mos (95% Cl)
 %

 Pembrolizumab
 157 (52.5) 20.0 (15.4-24.9)
 44.7

 CT
 199 (66.3)
 12.2 (10.4-14.2)
 30.1


PD-L1 TPS ≥ 20%

 Events,
 Median OS, 24-Mo OS, n (%)


 Mos (95% Cl)
 %

 Pembrolizumab
 230 (55.7) 17.7 (15.3-22.1) 40.5

 CT
 266 (65.7) 13.0 (11.6-15.3) 29.6

KEYNOTE-042: Adverse Events

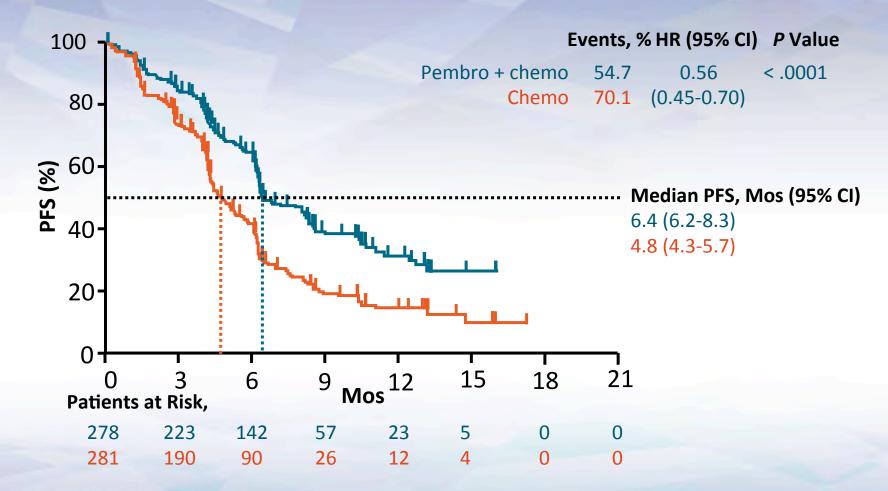
Lopes G, et al. ASCO 2018. Abstract LBA4.

KEYNOTE-407: Study Design

Randomized, double-blind phase III trial

Stratified by PD-L1 TPS (< 1% vs ≥ 1%), taxane (paclitaxel vs nab-paclitaxel), region (east Asia vs other)

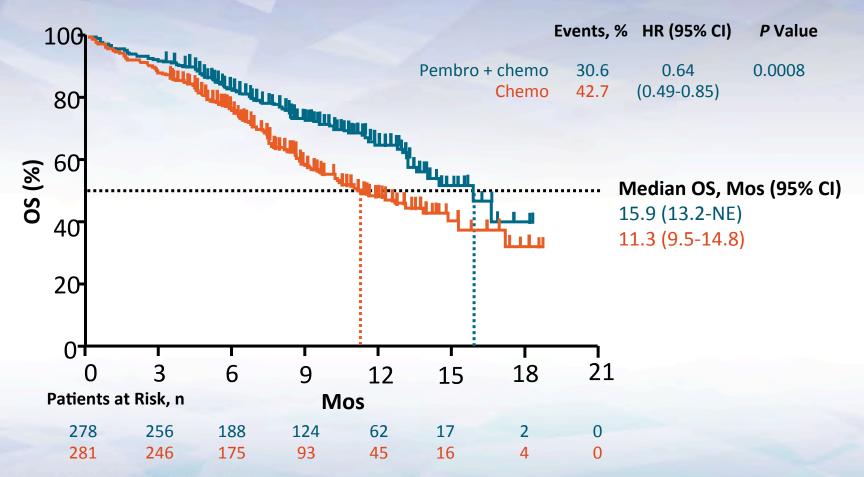
Patients with untreated stage IV squamous NSCLC, ECOG PS 0/1, available tumor biopsy for PD-L1 assessment, no brain mets, and no pneumonitis requiring systemic steroids (N = 559)


Pembrolizumab + Carboplatin + Paclitaxel or nab-Paclitaxel 3-wk cycles x 4 (n = 278)	Pembrolizumab up to 31 cycles		Crossover allowed*
Placebo + Carboplatin + Paclitaxel or nab-Paclitaxel 3-wk cycles x 4 (n = 281)	Placebo up to 31 cycles	P D	Pembrolizumab up to 35 cycles

Primary endpoint: PFS by RECIST v1.1 (BICR), OS

The Medical **Oncology** Centre of Rosebank

KEYNOTE-407: PFS by RECIST v1.1 (BICR) in ITT Population

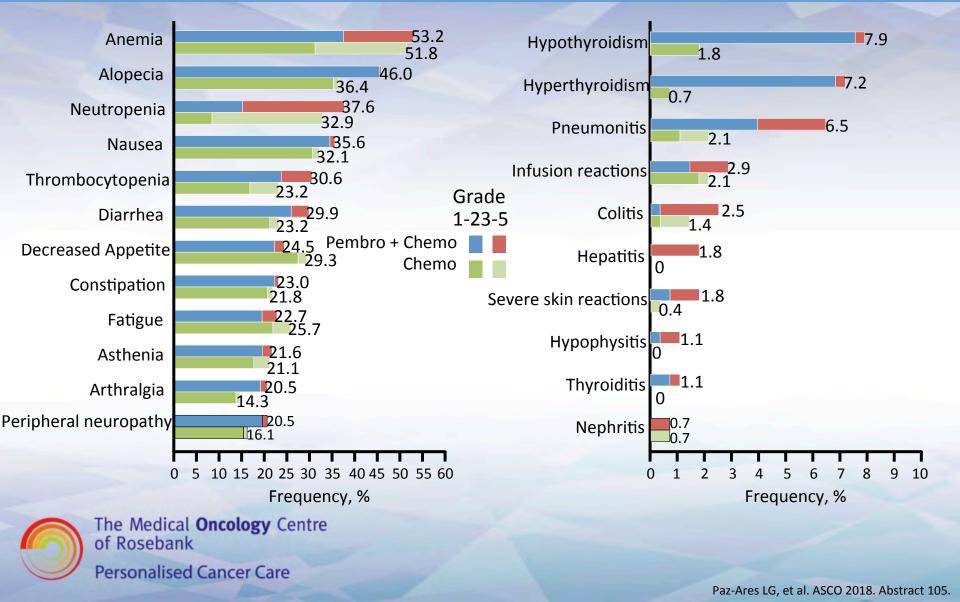


The Medical **Oncology** Centre of Rosebank Personalised Cancer Care

Paz-Ares LG, et al. ASCO 2018. Abstract 105..

KEYNOTE-407: OS in ITT Population

The Medical **Oncology** Centre of Rosebank


Personalised Cancer Care

Paz-Ares LG, et al. ASCO 2018. Abstract 105..

KEYNOTE-407: AEs

All-Cause AEs Occurring in \geq 20% of Patients

Immune-Mediated AEs and Infusion Reactions

IMmotion151 Patient-Reported Outcomes With Firstline Atezolizumab + Bevacizumab vs Sunitinib in Treatment-Naive Metastatic RCC

IMmotion 151: Study Design

Stratified by MSKCC risk score, liver mets, PD-L1 status (< 1% vs ≥ 1%)

Treatment-naive patients with advanced or metastatic RCC; clear cell and/or sarcomatoid histology, KPS ≥ 70 and tissue available for PD-L1 staining (N = 915)

Atezolizumab 1200 mg IV Q3W + Bevacizumab 15 mg/kg IV Q3W (n = 454)

> Sunitinib 50 mg/day PO 4 wks on, 2 wks off (n = 461)

Primary endpoints: PFS by PD-L1 status, OS in ITT

The Medical **Oncology** Centre of Rosebank

Personalised Cancer Care

Motzer R, et al. ASCO GU 2018. Abstract 578. Escudier B, et al. ASCO 2018. Abstract 4511.

IMmotion 151: Atezolizumab + Bevacizumab vs Sunitinib in Untreated mRCC: Background

- IMmotion 151: atezolizumab + bevacizumab vs sunitinib in treatment-naive patients with mRCC^[1]
 - Met coprimary endpoint of improved PFS in PD-L1–positive patients: median 11.2 mos with atezolizumab + bevacizumab vs
 7.7 mos with sunitinib (P = .02)
 - Median OS not yet reached in either treatment group in ITT population
 - Most treatment-related AEs less frequent with atezolizumab + bevacizumab than sunitinib except proteinuria
- Current analysis evaluated patient-reported outcomes as secondary and exploratory endpoints in ITT population^[2]

The Medical **Oncology** Centre of Rosebank

Personalised Cancer Care

Motzer R, et al. ASCO GU 2018. Abstract 578.
 Escudier B, et al. ASCO 2018. Abstract 4511.

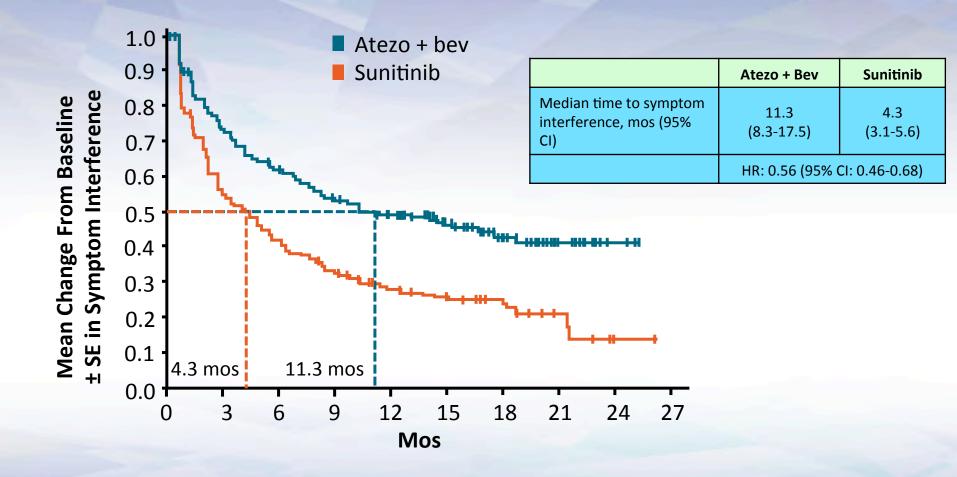
IMmotion 151 Patient-Reported Outcomes

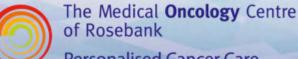
- Patient-reported outcomes assessed via questionnaires on Days 1 and 22 of each 6-wk cycle, at end of treatment, and during follow-up
 - MDASI: symptom severity and interference with daily life
 - FKSI-19: overall AE burden and health-related quality of life
- Questionnaire completion rates > 80% at baseline; both arms maintained ≥ 70% completion through Wk 54

The Medical **Oncology** Centre of Rosebank

IMmotion 151: Treatment-Related AEs*

Atezo + BeySunitinib Lower severity of 17 assessed symptoms with Diarrhea atezolizumab + PPF bevacizumab compared Hypertension with sunitinib during Fatigue treatment Nausea Most severe: rash, Dysgeusia fatigue, mouth/ Decreased appetite throat sores, dry Mucosal inflammation mouth, lack of Stomatitis appetite Asthenia All-grade AEs *≥ 20% in either arm and > 5% between Vomiting Grade 3/4 AEs arms. Proteinuria

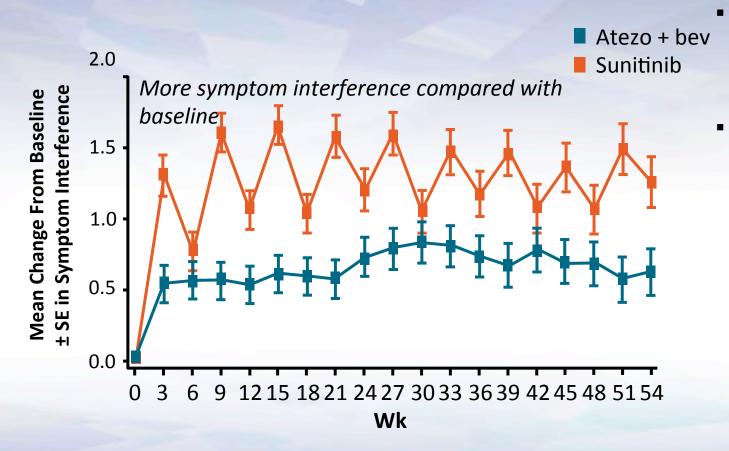

60% 50% 40% 30% 20% 10% 0 10% 20% 30% 40% 50% 60%



The Medical **Oncology** Centre of Rosebank

Personalised Cancer Care

Motzer R, et al. ASCO GU 2018. Abstract 578. Escudier B, et al. ASCO 2018. Abstract 4511. **IMmotion 151: Time to Deterioration of Patient Daily** Functioning by Symptom Interference (MDASI)



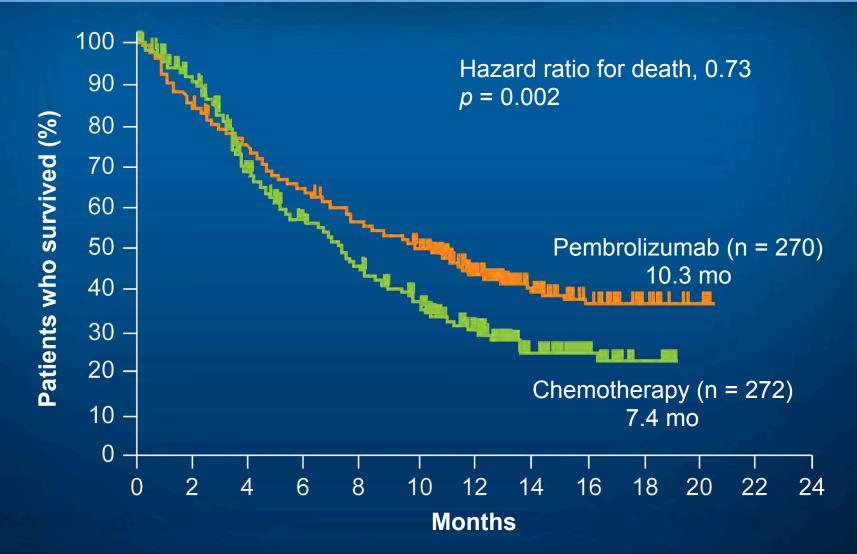
Personalised Cancer Care

Escudier B, et al. ASCO 2018. Abstract 4511.

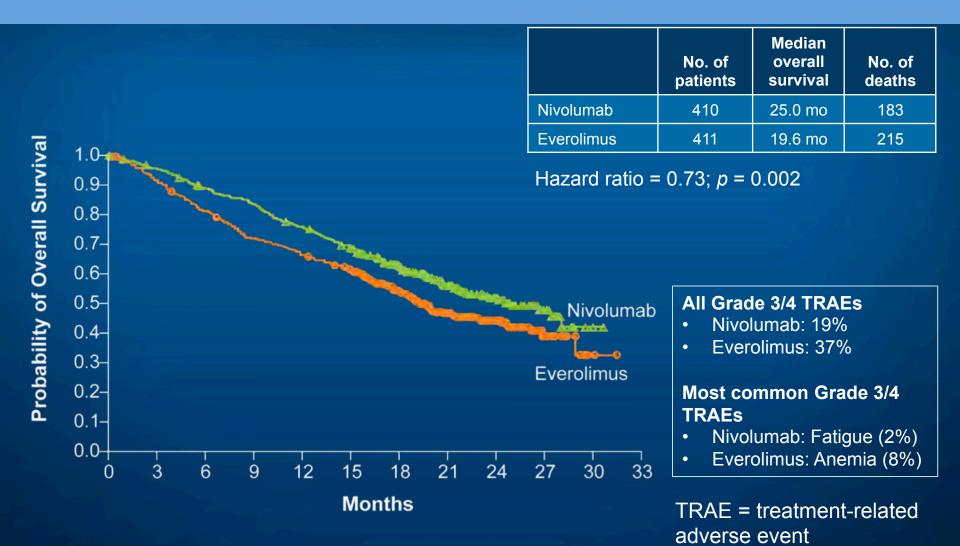
IMmotion 151 Patient-Reported Symptom Interference With Daily Living Over Time (MDASI)

- Baseline scores similar between arms indicating no or mild symptom interference
- Patients receiving atezolizumab + bevacizumab had less interference of symptoms with daily life vs sunitinib

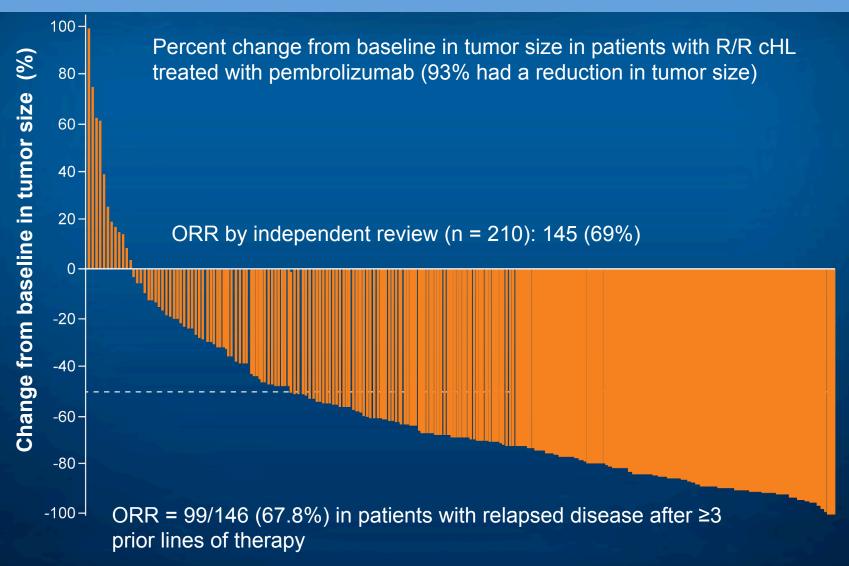
The Medical **Oncology** Centre of Rosebank


IMmotion 151

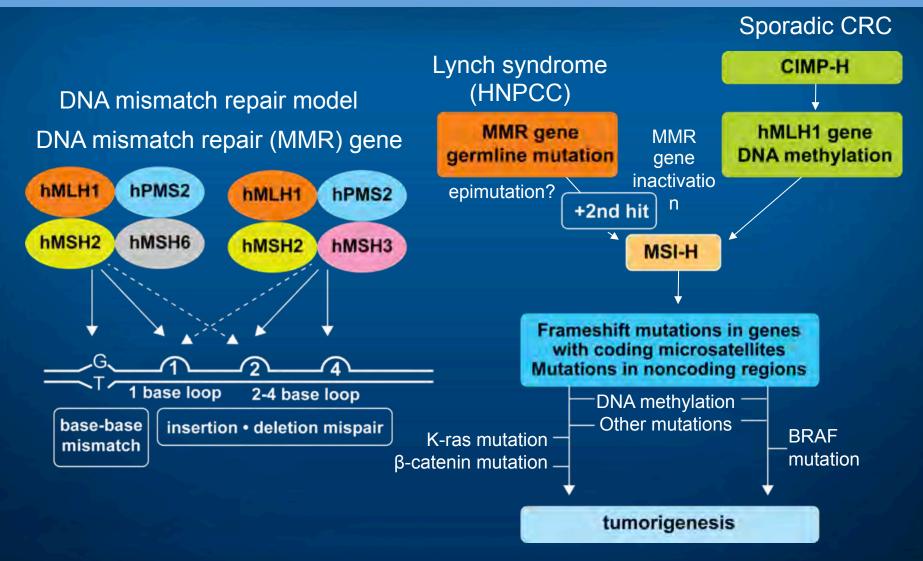
- All assessed patient-reported outcomes favored atezolizumab + bevacizumab over sunitinib
 - Milder symptoms
 - Lower degree of functional impairment
 - Less bothersome treatment AEs
 - Less negative impact on health-related quality of life
- Investigators suggest better patient-reported outcomes combined with promising efficacy results support atezolizumab + bevacizumab over sunitinib as first-line treatment for metastatic RCC


The Medical **Oncology** Centre of Rosebank

KEYNOTE-045: Phase III Study of Pembrolizumab versus Investigator's Choice of Chemotherapy for Previously Treated Urothelial Carcinoma

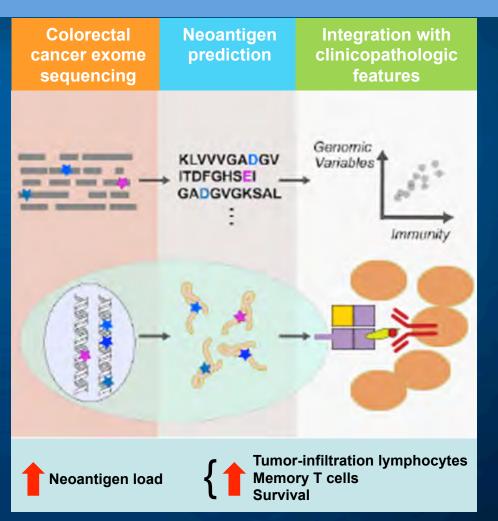

Bellmunt J et al. N Engl J Med 2017;376(11):1015-26.

CheckMate 025: Phase III Trial of Nivolumab versus Everolimus in Advanced Renal Cell Carcinoma (RCC)

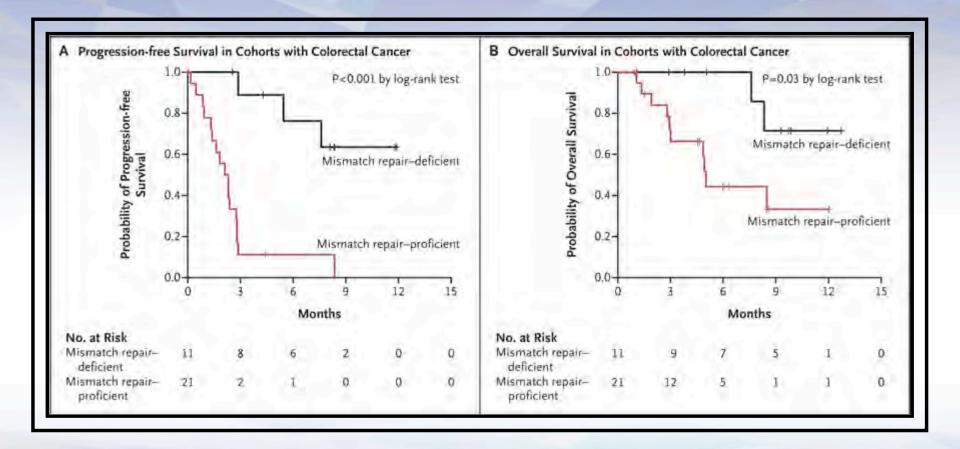


Motzer RJ et al. N Engl J Med 2015;373(19):1803-13.

KEYNOTE-087: Phase II Study of Pembrolizumab in Relapsed/Refractory (R/R) Classical HL (cHL)



Microsatellite Instability



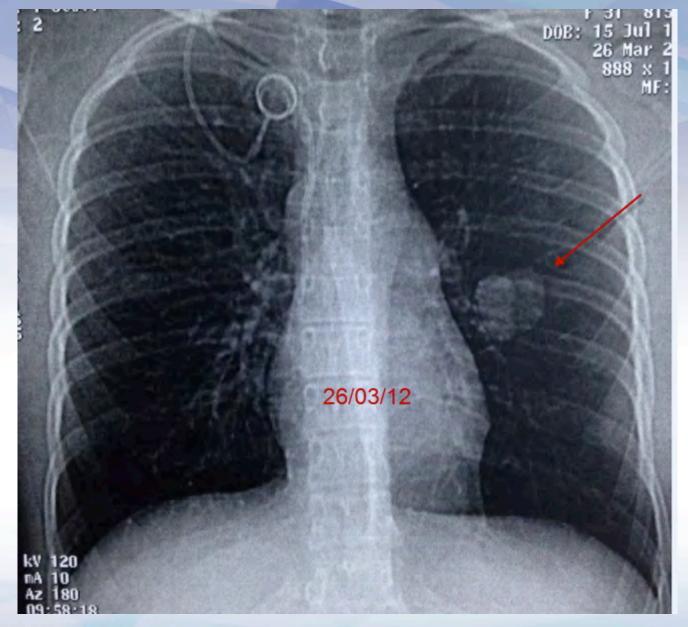
Hypermutation and Immuno-oncology

- In colorectal cancer (CRC), MSI-H is associated with increases in immune infiltration and expression of immune checkpoint regulators^{1,2}
- MSI-H is also associated with increased number of mutations per tumor
- Tumor mutations produce tumorspecific neoantigens, which, when expressed on the tumor cell surface, are a target for T cells
 - May improve response to immunotherapy
- Elevated neoantigen load in CRC is associated with improved survival²

Pembrolizumab in mismatch repair Colon Cancer

The Medical **Oncology** Centre of Rosebank

Melanoma Durable Remission Case Presentation


The Medical **Oncology** Centre of Rosebank

Melanoma

Pre-Ipilimumab

The Medical **Oncology** Centre of Rosebank

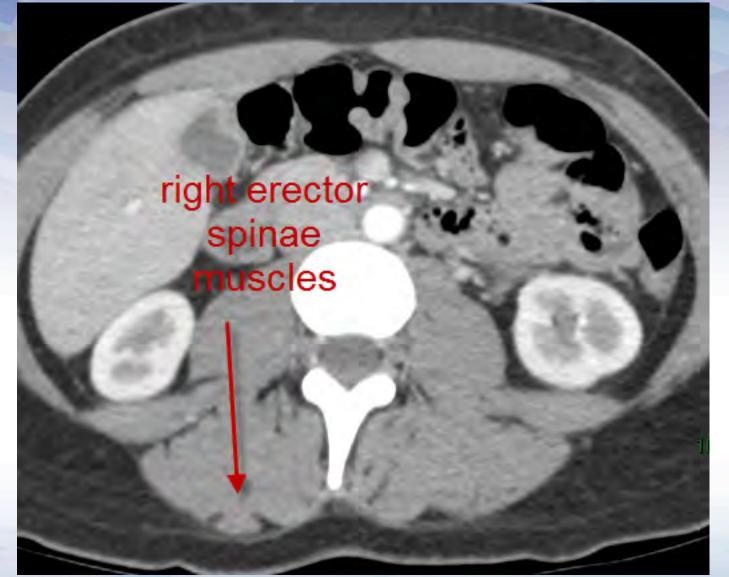
The Medical **Oncology** Centre of Rosebank

pelvic node

The Medical **Oncology** Centre of Rosebank

left lung met

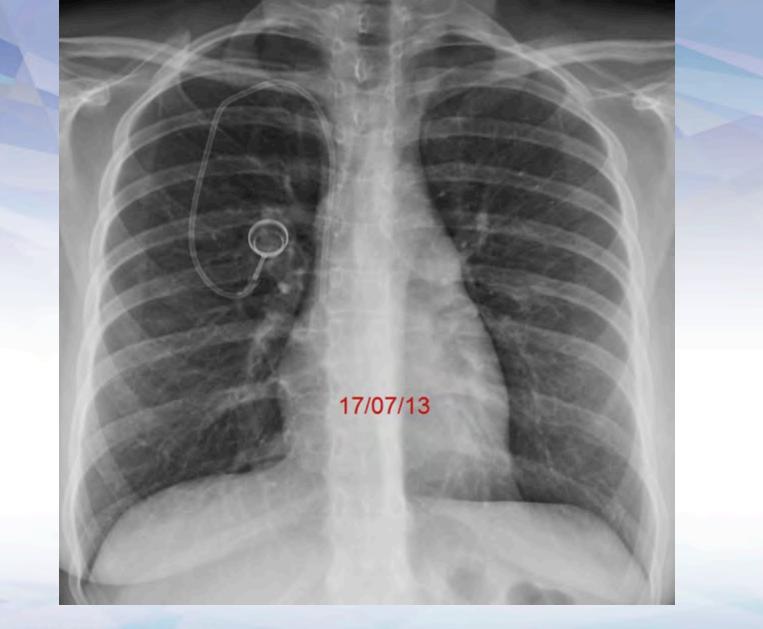
PET/CT 11/01/13 coronal



The Medical **Oncology** Centre of Rosebank

left chest wall met

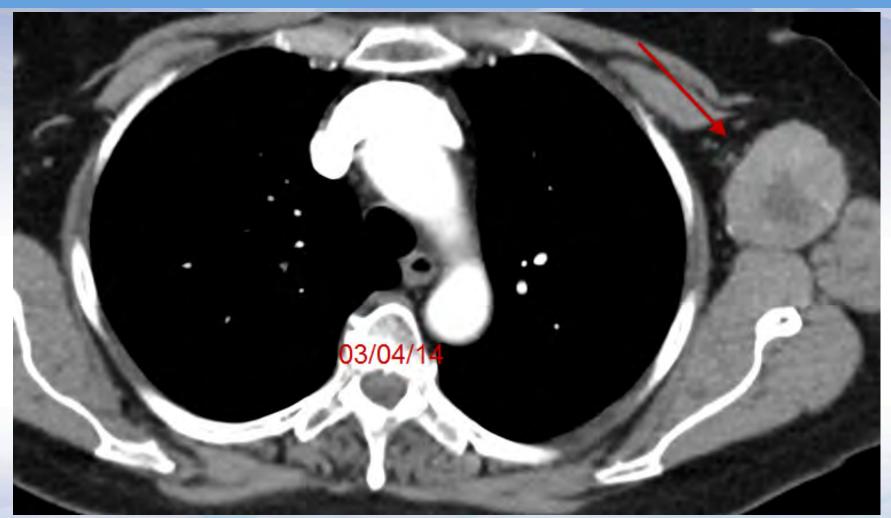
The Medical **Oncology** Centre of Rosebank


The Medical **Oncology** Centre of Rosebank

Melanoma

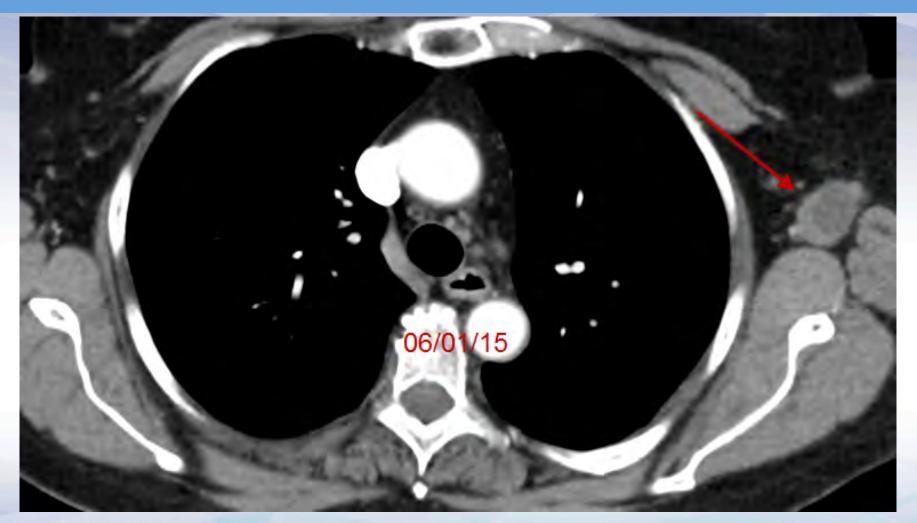
Post-Ipilimumab

The Medical **Oncology** Centre of Rosebank


The Medical **Oncology** Centre of Rosebank Personalised Cancer Care

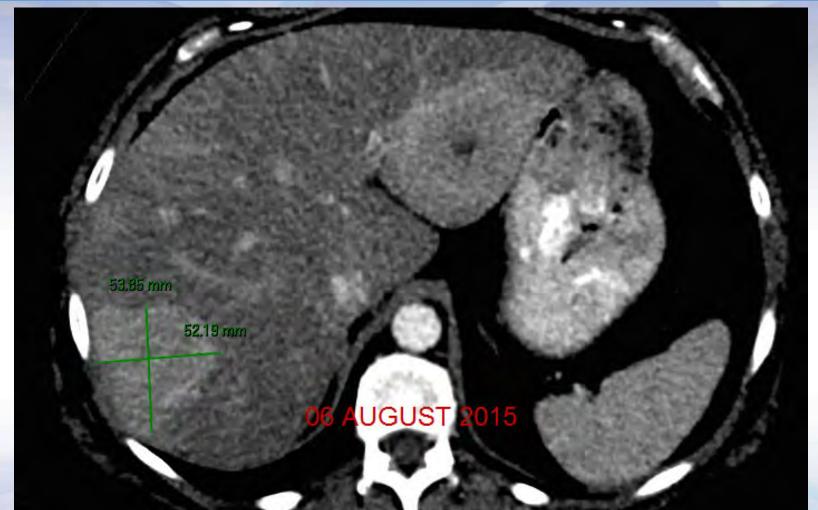
Melanoma Durable Remission Case Presentation 2

The Medical **Oncology** Centre of Rosebank


Melanoma Pre-Ipilimumab

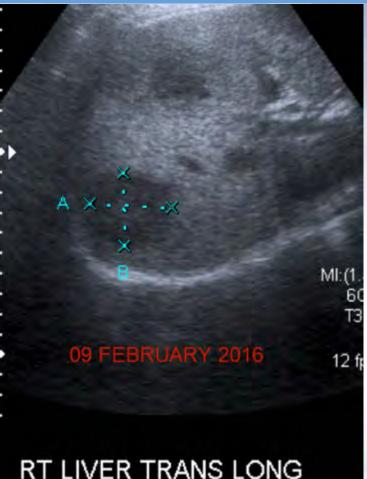
The Medical **Oncology** Centre of Rosebank

Melanoma Pre-Ipilimumab


The Medical **Oncology** Centre of Rosebank

Melanoma Durable Response Case Presentation 3

The Medical **Oncology** Centre of Rosebank


Melanoma Pre-Nivolumab

The Medical **Oncology** Centre of Rosebank

Melanoma Post-Nivolumab

		110/01/0	LONO
40.4	mm	Dist B	36.0 mr

The Medical **Oncology** Centre of Rosebank

NSCLC Durable Remission Case Presentation

The Medical **Oncology** Centre of Rosebank

RCC Durable Remission Case Presentation

The Medical **Oncology** Centre of Rosebank

RCC Pre-Nivolumab

The Medical **Oncology** Centre of Rosebank

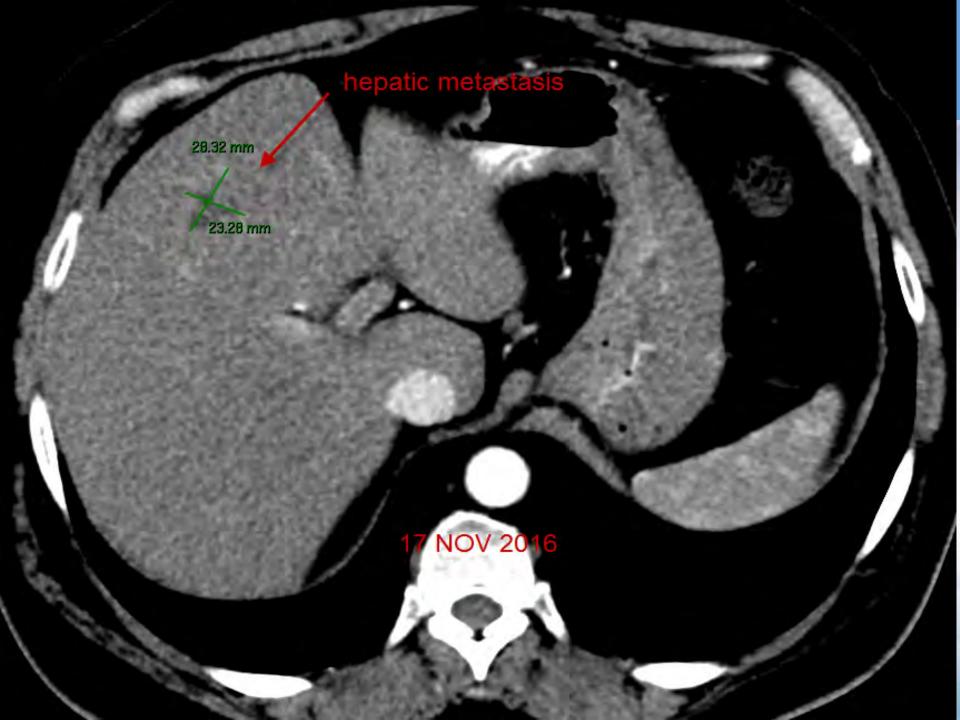
bilateral pulmonary metastases

11.83 mm

8.48 mm

06 JUNE 2016

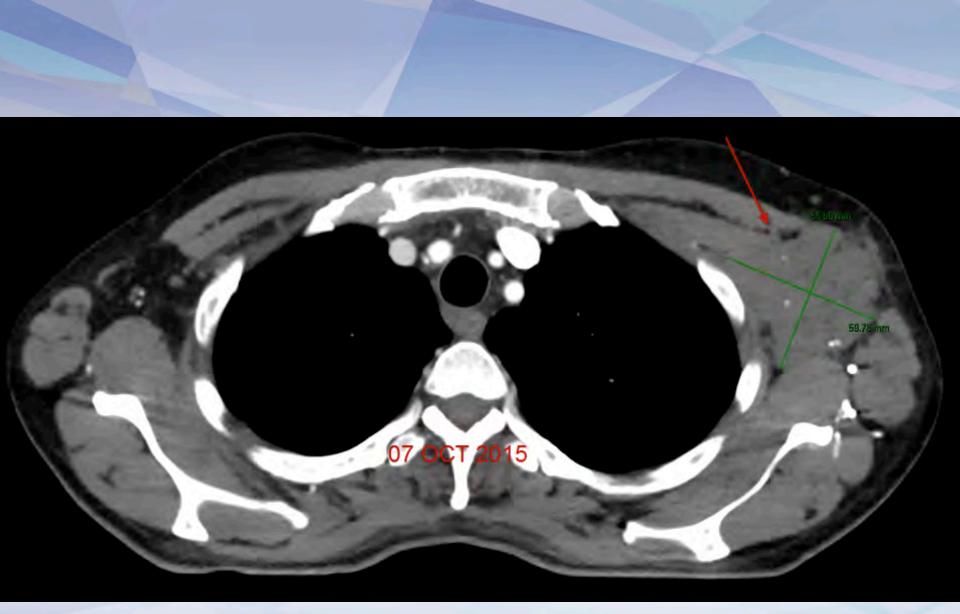
RCC Post-Nivolumab

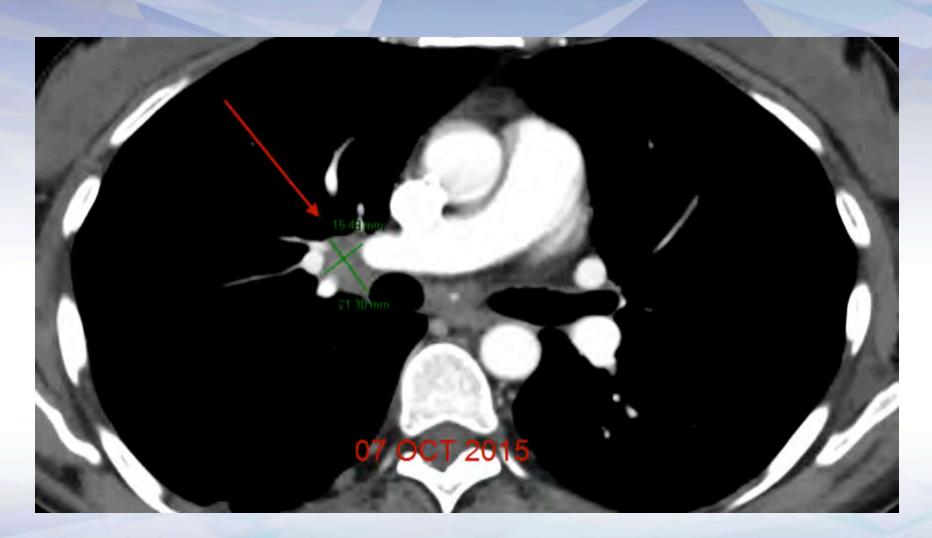

The Medical **Oncology** Centre of Rosebank

pulmonary metastasis

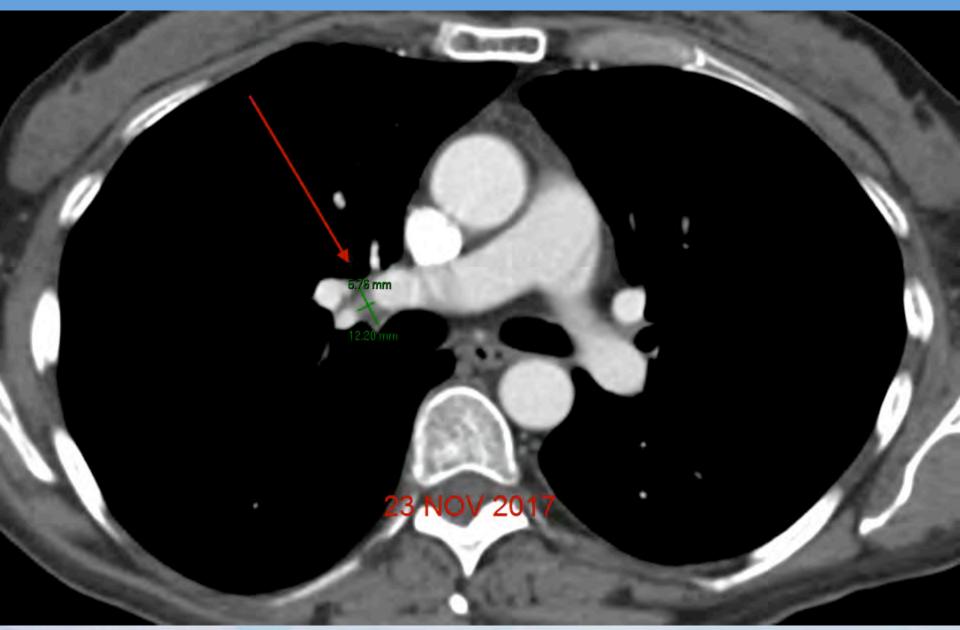
4.70 mm

2.17 mm


17 NOV 2016


Hodgkin's Disease Pre-Nivolumab

The Medical **Oncology** Centre of Rosebank


Hodgkin's Disease Post-Nivolumab

The Medical **Oncology** Centre of Rosebank

Conclusions

 Anti-PD1 and anti-CTLA4 antibody treatment is associated with durable remissions in patients with a variety of solid tumors

• Possible cures

Different toxicity profiles

The Medical **Oncology** Centre of Rosebank