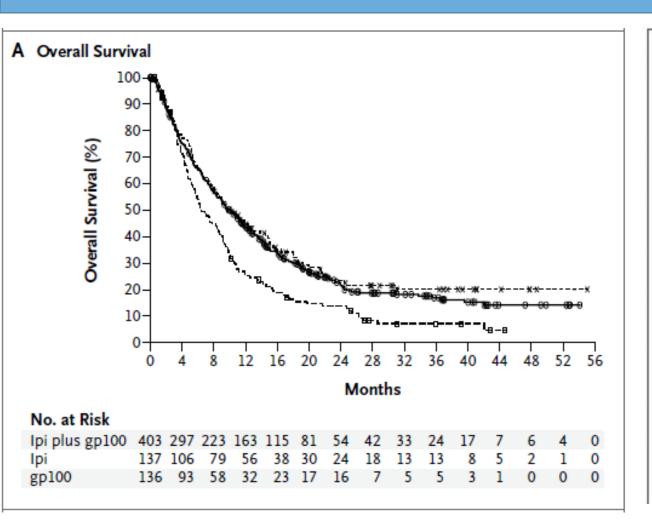
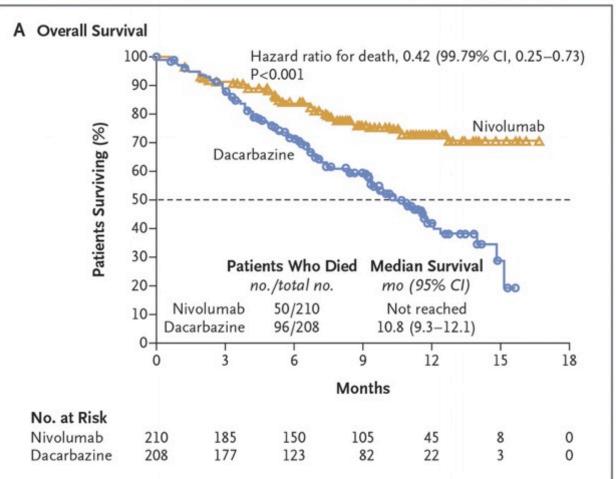
Gastrointestinal Toxicities of Checkpoint Blockade

Michael Dougan, MD, PhD

Director of the Immunotherapy Mucosal Toxicities Program

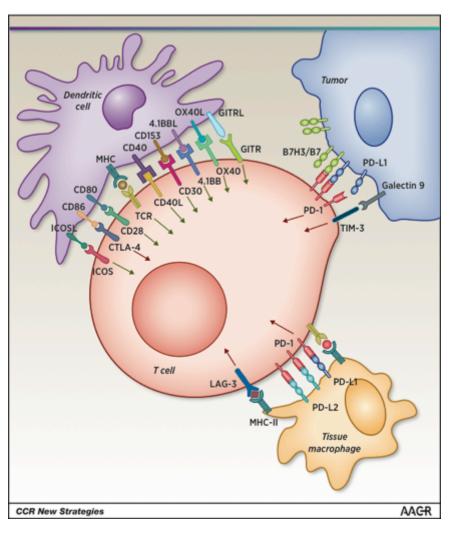
Massachusetts General Hospital


Disclosures


- Novartis Pharmaceutics
- Tocagen

• I will be talking about non FDA approved indications for infliximab (and other anti-TNF medications), and vedolizumab

Immune therapy for melanoma is highly effective


Current metastatic melanoma 3-yr survival is now 40% (compared to <5% before 2011)

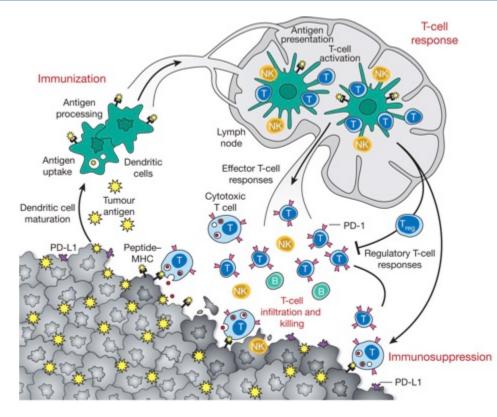
MASSACHUSETTS
GENERAL HOSPITAL

GASTROENTEROLOGY

Hodi et al. NEJM. 2011; Robert et al. NEJM. 2015.

Immune therapy for cancer

- Developing tumors are recognized by adaptive immunity (e.g. mutated tumor proteins)
- Regulatory pathways (PD1/PDL1, CTLA-4) inhibit nascent antitumor responses
- Blockade of regulatory "checkpoints" has proven highly effective at activating adaptive responses against diverse malignancies
- Current treatments are only effective in a minority of patients with cancer

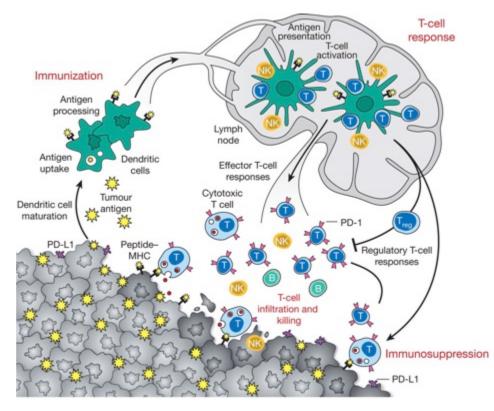


Expanding the reach of immunotherapy

- Diagnostics to monitor/predict response
- Combination and tumor directed immune therapies

Modulation of innate immunity

 Prediction and management of immune-related adverse events (irAEs)


Mellamn, Coukos & Dranoff. Nature. 2011

Expanding the reach of immunotherapy

- Diagnostics to monitor/predict response
- Combination and tumor directed immune therapies

- Modulation of innate immunity
- Prediction and management of immune-related adverse events (irAEs)

Mellamn, Coukos & Dranoff. Nature. 2011

Immune-related adverse events are not just "side effects"

Window into the biology of immune regulation in humans

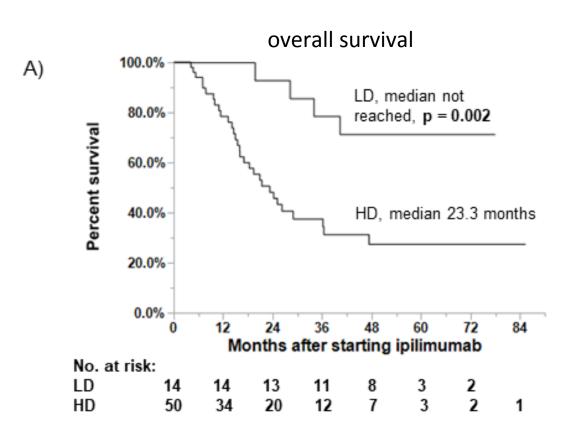
Potential insight into "sporadic" autoimmunity

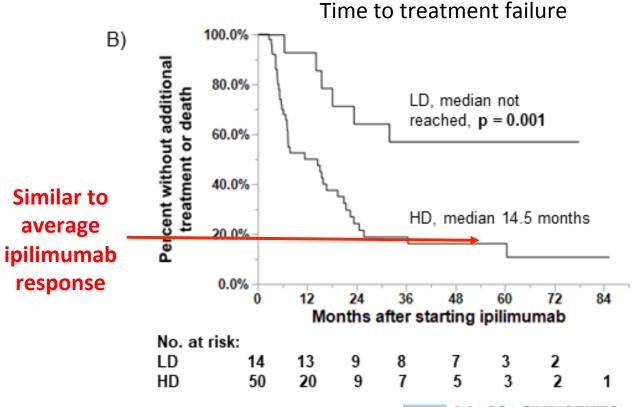
Likely complex relationship to antitumor response

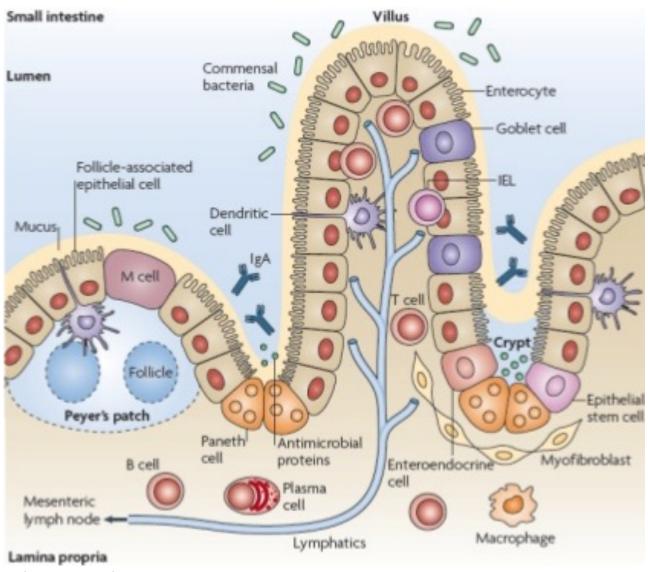
Managing immune toxicities to improve cancer therapy

- •Minimize morbidity/mortality from immune toxicities without inhibiting antitumor immunity
- Novel therapeutics to avoid steroids
- Concurrent treatments
- •Prophylactic/preventative treatments in high risk patients
- Likely to be increasingly important with combination treatments

Is it important to avoid steroids?


Horvat et al. JCO. 2009. Single center retrospective study


- Patients only received steroids if they had an adverse event
- Anyone with a serious adverse event got steroids
- Could this response be better with alternate immune suppression?


MGH data suggests steroids inhibit the antitumor response

Metastatic melanoma treated with ipilimumab All patients in the analysis developed hypophysitis

The gut is a complex barrier

- Careful immune regulation is essential to the gut
 - Dietary antigens
 - Commensal bacteria
 - Pathogenic microorganisms
 - Toxins

Abreu et al. Nat. Rev. Imm. 2010

Disruption of immune homeostasis leads to a widespectrum of common GI toxicities

Ipilimumab $\alpha PD-1^a$ $\alpha PD-L1^b$ Ipilimumab + $\alpha PD-1$

Constitutional				
Fatigue	15.2-48	10.4-34.2	13.1-25	35.1-39
Asthenia	6.3-11	4.8-11.5	6.6	9
Pyrexia	6.8-15	4.2-10.4	6.6-8	18-20
Dermatologic				
Pruritus	26-35.4	8.5-20	8-10	33.2-40
Rash	14.5-32.8	0.9-25.9	8	40.3-41
Gastrointestinal (GI)				
Diarrhea	22.7-37	7.5-19.2	9.8-15	44.1-45
Nausea	8.6-24	5.7-16.5	6.6-17	21-25.9
Vomiting	7-11	2.6-16.4		13-15.3
Decreased appetite	9-12.5	1.9-10.9	8-8.2	12-17.9
Constipation	9	2-10.7		8-11
Colitis	8.2-11.6	0.9-3.6	2	18-23
Hepatitis	1.2-3.9	1.1-3.8	4	15.3-27
Increased lipase	14-17	0.6	360	13-18
Musculoskeletal	,-		16.5	- 4-02
Arthalgia	5-9	2.8-14	6-10	10.5-11
Endocrine				
Hypothyroidism	1-15	4.8-11	5-8	15.3-17
Hyperthyroidism	2.3-4.2	3.2-7.8		

(Entero)colitis
Hepatitis
Pancreatitis

2-2.3

0 - 1.8

0.4-0.7

0.4

0.4 - 5.8

12-13

5

9-11

Hypophysitis

Pulmonary

Pneumonitis

Adrenal insufficiency

And some rare ones...

Gastritis

Celiac

Pulmonary

Pneumonitis

Cholangitis

lpilimumab	αPD-1 ^a	αPD-L1 ^b	Ipilimumab +
			αPD-1
	Ipilimumab	Ipilimumab αPD-1 ^a	Ipilimumab αPD-1 ^a αPD-L1 ^b

Common toxicities of checkpoint blockade (all grades)				
Constitutional				
Fatigue	15.2-48	10.4-34.2	13.1-25	35.1-39
Asthenia	6.3-11	4.8-11.5	6.6	9
Pyrexia	6.8-15	4.2-10.4	6.6-8	18-20
Dermatologic				
Pruritus	26-35.4	8.5-20	8-10	33.2-40
Rash	14.5-32.8	0.9-25.9	8	40.3-41
Gastrointestinal (GI)				
Diarrhea	22.7-37	7.5-19.2	9.8-15	44.1-45
Nausea	8.6-24	5.7-16.5	6.6-17	21-25.9
Vomiting	7-11	2.6-16.4		13-15.3
Decreased appetite	9-12.5	1.9-10.9	8-8.2	12-17.9
Constipation	9	2-10.7		8-11
Colitis	8.2-11.6	0.9-3.6	2	18-23
Hepatitis	1.2-3.9	1.1-3.8	4	15.3-27
Increased lipase	14-17	0.6		13-18
Musculoskeletal				
Arthalgia	5-9	2.8-14	6-10	10.5-11
Endocrine				
Hypothyroidism	1-15	4.8-11	5-8	15.3-17
Hyperthyroidism	2.3-4.2	3.2-7.8		
Hypophysitis	2-2.3	0.4-0.7		12-13
Adrenal insufficiency	0-2	0.4		5

Dougan M. Frontiers in Immunology. 2017.

0-1.8

0.4 - 5.8

9-11

The spectrum is dependent on the pathway targeted

	Ipilimumab	αPD-1ª	αPD-L1 ^b	lpilimumab ⊣ αPD-1	
Common toxicities of checkpoint blockade (all grades)					
Constitutional					
Fatigue	15.2-48	10.4-34.2	13.1-25	35.1-39	
Asthenia	6.3-11	4.8-11.5	6.6	9	
Pyrexia	6.8-15	4.2-10.4	6.6-8	18-20	
Dermatologic					
Pruritus	26-35.4	8.5-20	8-10	33.2-40	
Rash	14.5-32.8	0.9-25.9	8	40.3-41	
Gastrointestinal (GI)					
Diarrhea	22.7-37	7.5-19.2	9.8-15	44.1-45	
Nausea	8.6-24	5.7-16.5	6.6-17	21-25.9	
Vomiting	7-11	2.6-16.4		13-15.3	
Decreased appetite	9-12.5	1.9-10.9	8-8.2	12-17.9	
Constipation	9	2-10.7		8-11	
Colitis	8.2-11.6	0.9-3.6	2	18-23	
Hepatitis	1.2-3.9	1.1-3.8	4	15.3-27	
Increased lipase	14-17	0.6		13-18	
Musculoskeletal					
Arthalgia	5-9	2.8-14	6-10	10.5-11	
Endocrine					
Hypothyroidism	1-15	4.8-11	5-8	15.3-17	
Hyperthyroidism	2.3-4.2	3.2-7.8			
Hypophysitis	2-2.3	0.4-0.7		12-13	
Adrenal insufficiency	0-2	0.4		5	
Pulmonary					
Pneumonitis	0-1.8	0.4-5.8	4	9-11	

Dougan M. Frontiers in Immunology. 2017.

Some immune-mediated diseases are not seen

IgE-mediated food allergies

Eosinophilic esophagitis

Eosinophilic gastrointestinal diseases

• Does this tell us something about the role of CTLA-4 and PD-1/PD-L1 in the regulation of these (probably related) diseases?

Enterocolitis

 Enterocolitis is by far the most common GI toxicity from current checkpoint blocking antibodies

Range of severity (many patients have indolent disease)

Likely responsible for most treatment related diarrhea

 Often isolated to the colon, but can involve the GI tract from stomach to rectum

CTLA-4 and PD-1/PD-L1 have different regulatory roles in the gut

Ipilimumab colitis

- More frequent and more severe
- Rapid onset
- Dose-dependent
- Rapidly resolves

PD1-blockade colitis

- More microscopic inflammation
- Indolent course
- Dose-independent (?)

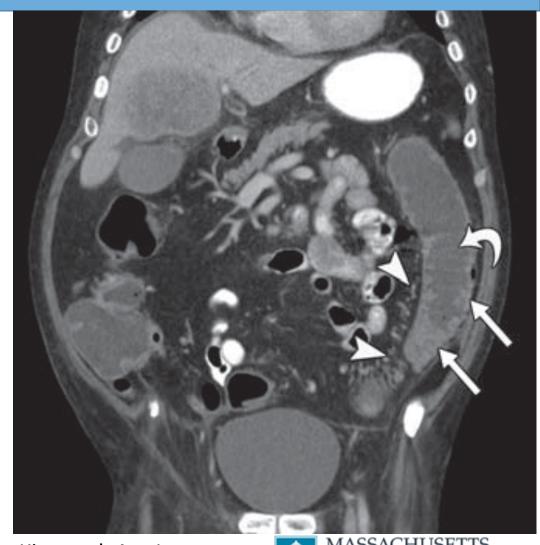
Slow resolution Gastroenterology

Clinical Features

Watery diarrhea >> pain or cramping

Urgency without incontinence

• Blood is rare


 Can be accompanied by nausea/ vomiting



Initial workup of checkpoint blockade induced enterocolitis

- Exclude infections: stool culture, test for *C. Difficile*
- CT scans are useful in some patients
 - looking for perforation or other potentially surgical complications

Kim et al. Am J Roentgenol. 2013.

GASTROENTEROLOGY

PD-1 blockade in Crohn's

 74 yoM w/ quiescent Crohn's and metastatic sarcoma on nivolumab

Asymptomatic off medication for many years

 two weeks after starting PD-1 blockade p/w severe abdominal pain

Checkpoint blockade can cause IBD reactivation

Checkpoint blockade can cause IBD reactivation

Received steroids and antibiotics

Nivolumab held

Underwent ileocecal resection with no further complications

Checkpoint blockade in patients with IBD

Original Investigation

Ipilimumab Therapy in Patients With Advanced Melanoma and Preexisting Autoimmune Disorders

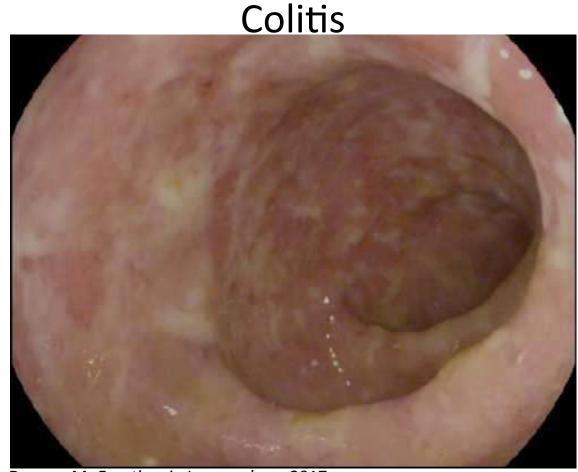
Douglas B. Johnson, MD; Ryan J. Sullivan, MD; Patrick A. Ott, MD, PhD; Matteo S. Carlino, MBBS; Nikhil I. Khushalani, MD; Fei Ye, PhD; Alexander Guminski, MD, PhD; Igor Puzanov, MD; Donald P. Lawrence, MD; Elizabeth I. Buchbinder, MD; Tejaswi Mudigonda, BS; Kristen Spencer, DO; Carolin Bender, MD; Jenny Lee, MBBS; Howard L. Kaufman, MD; Alexander M. Menzies, MBBS; Jessica C. Hassel, MD; Janice M. Mehnert, MD; Jeffrey A. Sosman, MD; Georgina V. Long, MBBS; Joseph I. Clark, MD

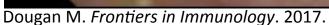
- 6 patients with pre-existing IBD (quiescent)
- 2 cases of colitis (33%)
- Higher than average risk (5-10%)
- I have seen several of these patients and they tend to be more difficult to treat

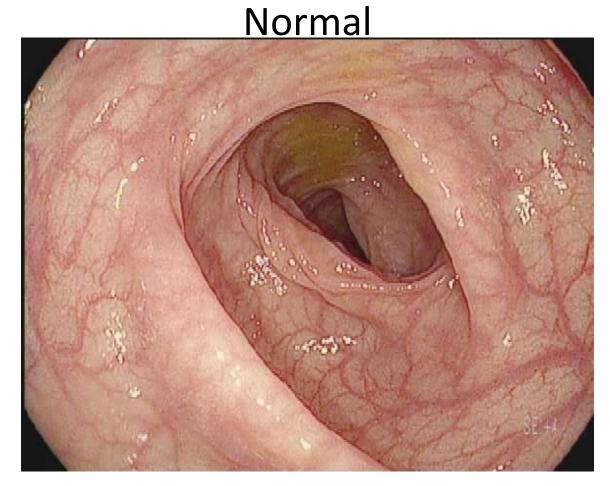
PD-1 blockade may have less of an effect on IBD

Safety of Programmed Death–1 Pathway Inhibitors Among Patients With Non–Small-Cell Lung Cancer and Preexisting Autoimmune Disorders

Giulia C. Leonardi, Justin F. Gainor, Mehmet Altan, Sasha Kravets, Suzanne E. Dahlberg, Lydia Gedmintas, Roxana Azimi, Hira Rizvi, Jonathan W. Riess, Matthew D. Hellmann, and Mark M. Awad


 Two retrospective studies comprising 12 patients with UC or Crohn's treated with PD-1/PD-L1


 Few patient details in the study, but all had minimal/no evidence of ongoing disease


GASTROENTEROLOGY

•None flared while on PD-1 blockade, but they had a higher incidence of unrelated irAEs

Endoscopic Appearance

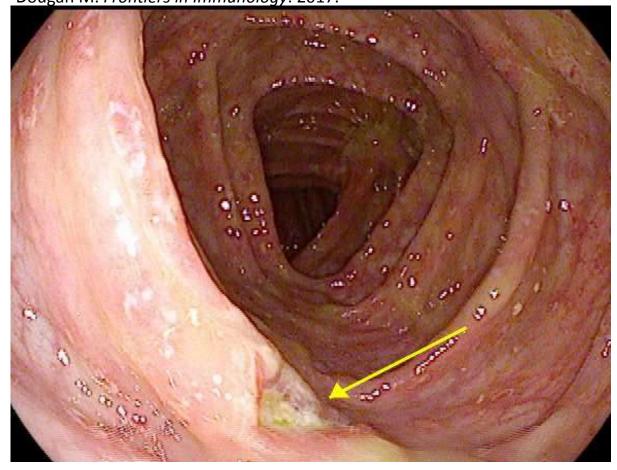
Who needs to undergo endoscopy

- Grade 3/4 diarrhea and anyone who is sick enough to be admitted
- Persistent grade 2 disease (sometimes even grade 1)
- Atypical symptoms: bleeding, pain, fevers
- Atypical onset: months after discontinuation of immunotherapy, <7
 days after starting, rapid escalation
- Diarrhea on investigational combinations, or other drugs that cause diarrhea

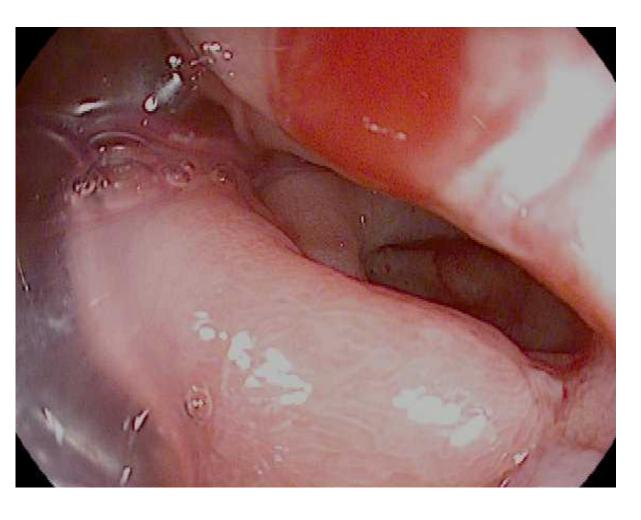
Extent of disease: UC type pattern

- Typically a pan-colitis
- Regional variability

Table 2. Site of inflammation on colonoscopies of patients with anti-CTLA-4 enterocolitis. Variation in the denominator is due to incomplete colonoscopy.

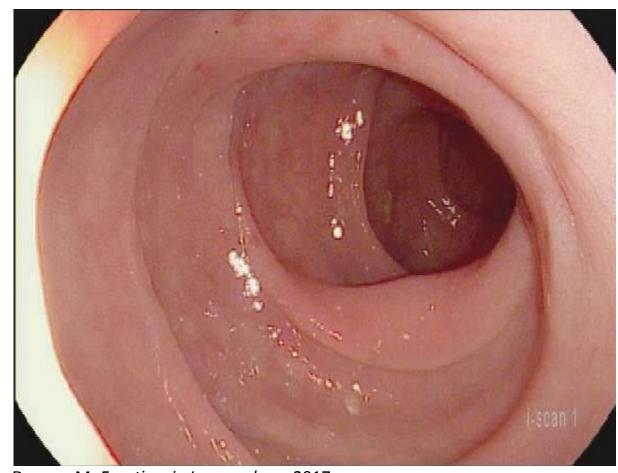

Ileum	5/25	20
Ascending colon	27/33	82
Transverse	28/35	80
Descending colon	35/38	92
Sigmoid colon	36/38	95
Rectum	32/39	82
Extensive colitis	23/35	66
Patchy distribution	18/33	55

Marthey et al. J Crohns Colitis 2016.


Crohns type disease does occur

Dougan M. Frontiers in Immunology. 2017.

Crohns type disease does occur



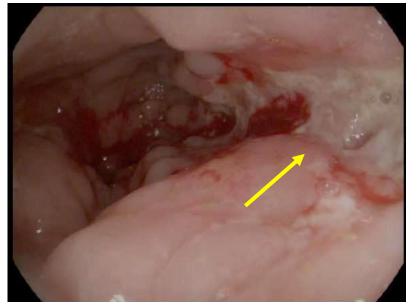
- Nivolumab (13 months)
 - previously treated with ipilimumab/nivolumab, and BRAF/MEKi

- Rare (on the order of 1%)
- This patient was treated with infliximab and a duodenal stent

Microscopic colitis

Dougan M. Frontiers in Immunology. 2017.

 Can be high grade based on diarrhea criteria


Responds to budesonide

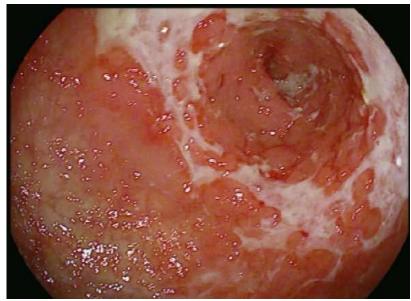
- Does not require discontinuation of checkpoint blockade
- More common with anti-PD-1

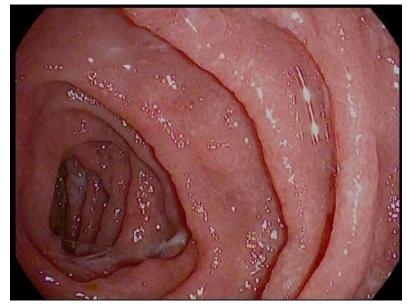
How similar is checkpoint colitis to IBD?

Crohn's Disease

Ulcerative Colitis

Checkpoint Colitis

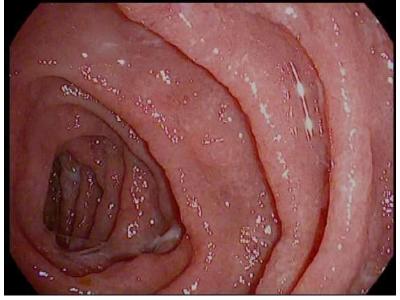

- Typically a pan colitis (more similar to UC)
- Deep ulcers and strictures are rare
- Fistulas don't seem to occur
- Typically a monophasic course



Upper GI manifestations would be rare in IBD

Gastritis

Enteritis (duodenum)


Dougan M. Frontiers in Immunology. 2017.

- Enteritis is common (25% or more), only seen in Crohn's
- Diarrhea disproportionate to colonic disease severity (enteritis?)
- Both of these occur exclusively in Crohn's and rarely involve the entire stomach or small bowel

Checkpoint induced Celiac Disease

Gastritis

Enteritis (duodenum)

Celiac

Dougan M. Frontiers in Immunology. 2017.

- Approximately 5% of cases of immunotherapy induced diarrhea
- Responds to a gluten free diet
- Variable response to steroids
- May be (partially) reversible

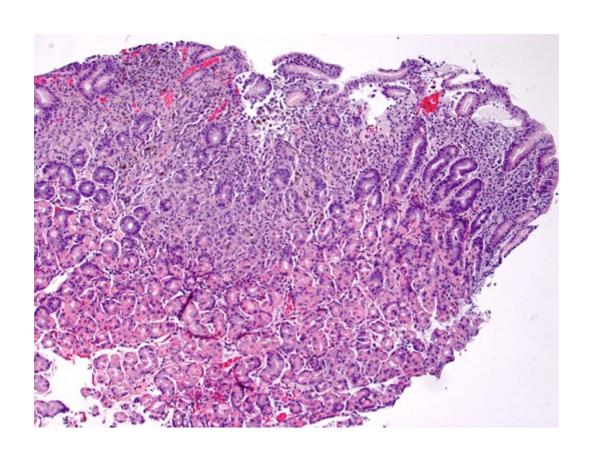
Not all adverse symptoms are adverse events

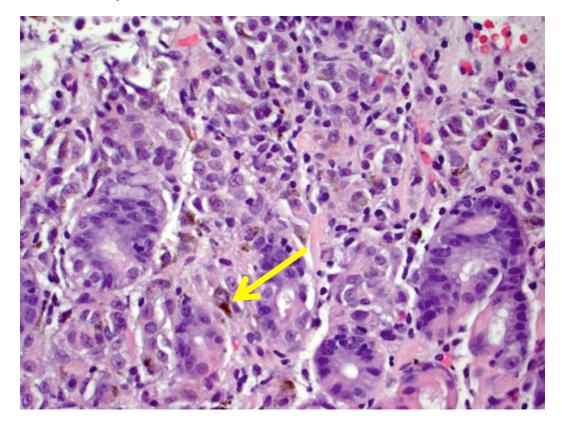
73 yo woman w/ uveal melanoma metastatic to the liver on ipilimumab p/w epigastric pain and reflux

Non responsive to high dose PPI

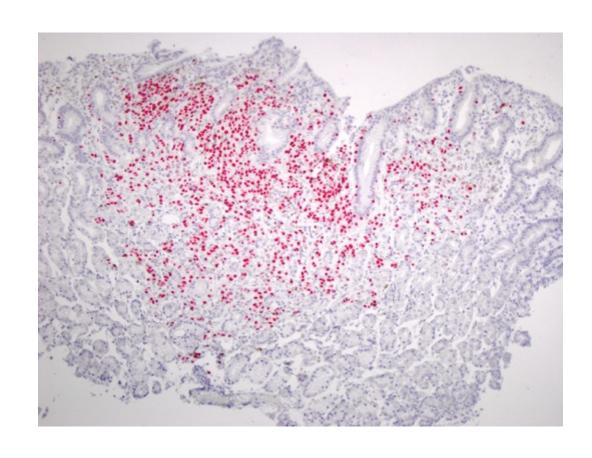
No prior history of GERD

Symptoms onset shortly after initiation of ipilimumab

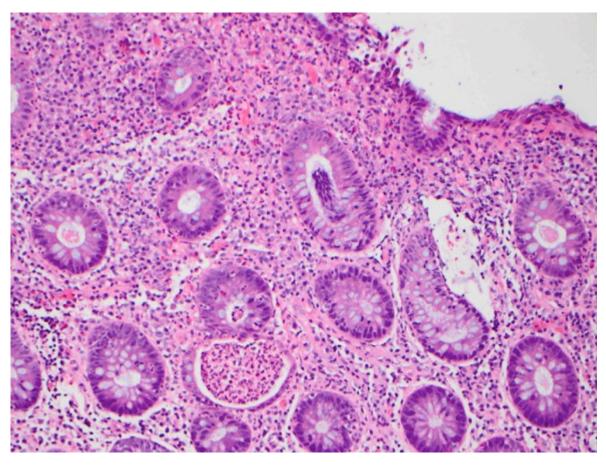

Endoscopy



Pathology



melanocytes



S100 positive: melanoma

Histology of Typical Checkpoint Colitis

Lymphocytic and neutrophilic infiltrate

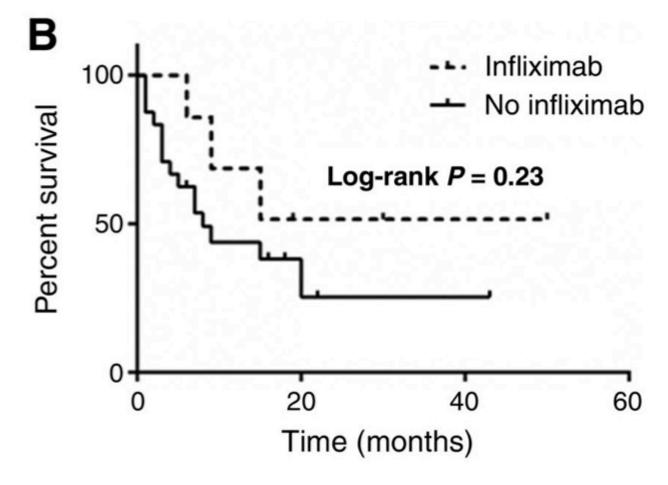
Prominent epithelial apoptosis

Crypt abscesses, rare granulomas reported

Preserved crypt architecture

Treatment of grade 3/4 checkpoint colitis

- Most patients respond to systemic steroids, and can be weaned over a period of several weeks
- Large case series reported 12/41 (<1/3) patients to be steroidrefractory (Beck et al. JCO. 2006)
 - MGH and other recent experience closer to 50% inadequate response
 - PD-1 blockade may be more likely to be refractory
- No rigorous studies of steroid dose
 - 1-2 mg/kg IV solumedrol, 40-60 mg oral prednisone



TNFα is a key mediator of checkpoint colitis

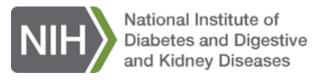
- Infliximab is highly effective in steroid refractory disease
 - Several small cases series (Beck et al. JCO. 2006), multiple other reports, incorporated into all guidelines
- Indications for infliximab
 - No/minimal response to steroids after 2-3 days
 - Recurrence on steroid taper
 - Colonic ulcers on endoscopy (?)
- Responses typically occur within days (1-3 doses)
 - PD-1 blockade colitis is more likely to be refractory

survival in patients with ipilimumab associated

Edurne Arriola et al. Clin Cancer Res 2015;21:5642-5643

Resistance to infliximab

- We have seen this very rarely at MGH
 - The question is not addressed adequately in the literature
- Most cases appear to be infectious (C Diff >> CMV, aspergillus)
 - We always rescope and obtain biopsies
- Where infections are rigorously excluded and colitis is still macroscopically severe, other options include:
 - bowel rest (TPN)
 - vedolizumab (integrin inhibitor)
 - CTLA-4-Ig (?)
 - Surgery



Next steps

- Mechanistic studies focusing on the immune mechanisms of colonic inflammation
 - Identify new targets
 - Understand the relationship to antitumor response
- Trials of novel therapeutic strategies
 - Integrin inhibitors
 - Anti-cytokine therapies
 - Microbiome (?)
- Endoscopy/pathology based treatment guidelines
 - Drug specific?

Acknowledgements

Funded by the AGA Research Foundation

Ryan Sullivan Kerry Reynolds

Donald Lawrence Justine Cohen

Keith Flaherty

Krista Rubin

Dana-Farber Cancer Institute

Stephanie Dougan

Kai Wucherpfennig

Elizabeth Buchbinder

Steve Hodi

Patrick Ott

MGH GI

Ramnik Xavier Alexa

Andy Chan

Dan Pratt

Molly Thomas

MGH SIIC

Novartis

Glenn Dranoff

Riley Fadden

Alexandra-Chloe Villani

Osama Rahma

Adrienne Louma

MIT

Michael Birnbaum

