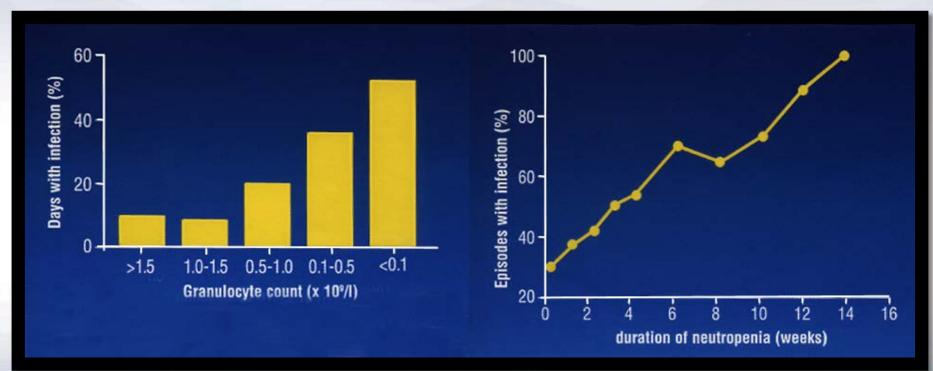
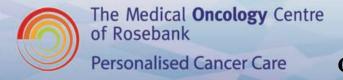


Febrile Neutropenia Symptoms, Diagnosis,

Treatment and Best Practice

Bernardo L. Rapoport
Medical Oncologist
Johannesburg, South Africa


brapoport@rosebankoncology.co.za

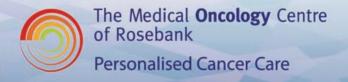


The risk of infection increases with the severity and duration of neutropenia

Definition of Febrile Neutropenia

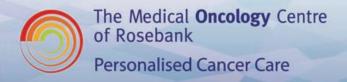
Fever: Single oral temperature ≥38.3°C or persistent temperature ≥38.0 °C for >1 hour

Neutropenia: ANC <0.5, or ANC <1.0 and a predicted decline to <0.5 over next 48 hrs. (ANC= absolute neutrophil count)



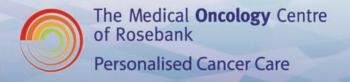
FEBRILE NEUTROPENIA

- Incidence of infection directly correlates with the depth and duration of neutropenia.
- FN is associated with significant morbidity and mortality
- Often dose-limiting
- Historically: Hospitalization for evaluation and initiation of IV broad-spectrum antibiotics
- Leading to reduced QOL

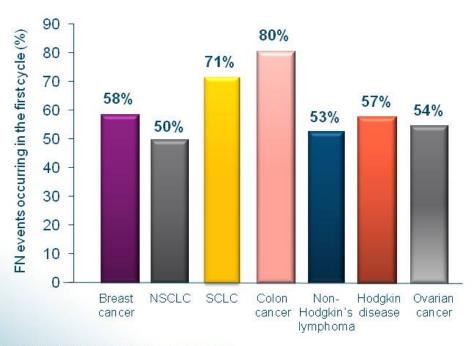


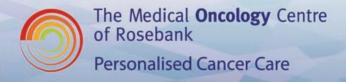
What is the Risk?

Incidence of Febrile Neutropenia		
Induction-remission for AML	70-90%	
Elderly patients receiving CHOP	35-45%	
Patients with NHL	10-20%	
Mortality Estimates from Febrile Neutropenia		
Solid tumours	5%	
Hematological malignancy	Up to 11%	
Gram-positive bacteremia	5%	
Gram-negative bacteremia	18%	



Predisposing Factors


- Malignancy
 - Type
 - Advanced/refractory
 - Obstructive
- Surgical risk
- Grade of neutropenia
- Disruption of mucosal barriers
- Corticosteroid use



More than half of FN events occur in the first cycle of chemotherapy

NSCLC: Non-small cell lung cancer; SCLC: Small cell lung cancer

Crawford et al. J Natl Compr Canc Netw 2008;6:109-18.

FN PATIENT EVALUATION

- Careful history & physical examination
- Prior fungal infection/candidiasis may recur during subsequent neutropenia
- Prolonged neutropenia is associated with invasive fungal infections
- Neutropenia duration correlates with the risk of serious infectious complications

FN PATIENT EVALUATION

- History & physical examination
- Differential CBC
- RFT, LFT, Electrolytes & uric acid
- At least 2 sets of blood cultures & culture specimens from sites of suspected infection.
- Urine analysis
- CXR

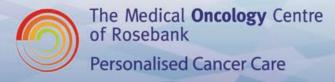
MUCOSITIS

May occur following chemotherapy treatment

 Severe mucositis may be very difficult to distinguish from herpes infection

 The presence of oral candidiasis is associated with impaired immunity

IMPORTANT CLINICAL SETTINGS IN PATIENTS WITH FN

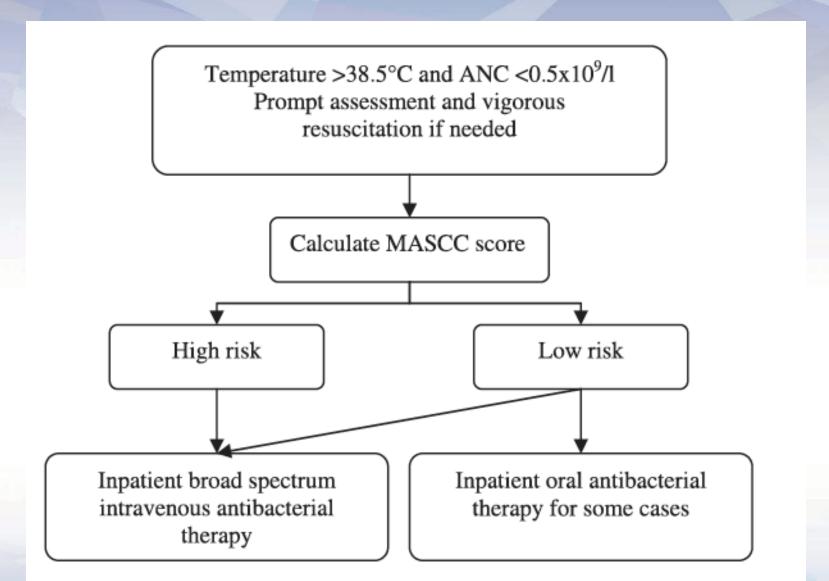

- Typical signs of infection may be blunted or even absent as a result of immunosuppression
- Recent clostridium difficile colitis should raise a suspicion of recurrent infection in a patient presenting with FN and diarrhea
- Patients undergoing corticosteroid treatment:
 This raises the possibility of opportunistic infection (such as P carinii)

SPECIFIC ASPECTS OF THE CLINICAL EXAMINATION IN FN

- Ophthalmologic and anterior sinuses examinations
- Detailed inspection of the skin and nails
- Inspection of the skin and nails may reveal lesions suggestive of systemic infection
 - ecthyma gangrenosum caused by P aeruginosa
 - erythematous papules caused by disseminated candidiasis

ECTHYMA GANGRENOSUM CAUSED BY P AERUGINOSA

ERYTHEMATOUS PAPULES CAUSED BY DISSEMINATED CANDIDIASIS



SPECIFIC ASPECTS OF THE CLINICAL EXAMINATION IN FN

- Inspection of catheter sites and surgical wounds and biopsies
- Inspection and palpation of the perineum and perianal regions
- An ENT specialist consultation may be warranted in some cases

RISK ASSESSMENT

RISK ASSESSMENT MASCC

Group	Characteristic
I	Inpatients (at the time of fever onset)
II	Outpatients with acute comorbidity requiring, by itself, hospitalization
III	Outpatients without comorbidity but with uncontrolled cancer
IV*	Outpatients with cancer controlled and without comorbidity

RISK ASSESSMENT MASCC

Characteristic	Score
Burden of illness: no or mild symptoms	5
Burden of illness: moderate symptoms	3
Burden of illness: severe symptoms	0
No hypotension (systolic BP >90 mmHg)	5
No chronic obstructive pulmonary disease	4
Solid tumor/lymphoma with no previous fungal infection	4
No dehydration	3
Outpatient status (at onset of fever)	3
Age <60 years	2

OUTPATIENT ANTIBIOTIC THERAPY FOR FN

- The Index consists of seven independent prognostic factors with an assigned integer value
- The index consists of the sum of these integers
- Patients with a MASCC risk index equal or grater than 21 identifies low-risk patients with a positive predictive value of 91% (specificity 68% and sensitivity 71%)
- The Index has being validated by other institutions in their respective patient populations and clinical settings

	•
Explanatory Variable*	No. of Points
Eastern Cooperative Oncology Group performance status ≥ 2	2
Chronic obstructive pulmonary disease	1
Chronic cardiovascular disease	1
National Cancer Institute Common Toxicity Criteria mucositis of grade ≥ 2	1
Monocytes < 200/μL	1
Stress-induced hyperglycemia	2

^{*}The six variables are integrated into a score ranging from 0 to 8, which classifies patients into three prognostic classes: low risk (0 points), intermediate risk (1 to 2 points), and high risk (≥ 3 points).

High-risk patients

- Prolonged neutropenia :>7 days Duration
- Profound Neutropenia (absolute Neutrophil count [ANC] <100 cells/mm3)
- Medical co-morbid conditions, including hypotension, pneumonia, new-onset abdominal pain, or neurologic changes.
- Such patients should be initially admitted to the hospital for empirical therapy

Low-risk patients

- Short duration neutropenia (<7 days duration)
- No or few comorbidities are candidates for oral empirical therapy
- Stable renal and hepatic function

EMPIRIC ANTIBIOTIC THERAPY

- In the early 1970s, Schimpff and colleagues conducted a study of patients with cancer and FN who were treated empirically with carbenicillin and gentamicin
- Treatment of patients with P aeruginosa infection had dramatic survival improvement compared to historic controls
- This study was the basis for empiric combination antibiotic therapy

ANTIBIOTIC THERAPY

 Local epidemiological bacterial isolate and resistance patterns are crucially important in determining first-choice empirical therapy, since coverage for MRSA or resistant Gramnegative bacteria may be required.

ORAL ANTIBIOTIC THERAPY

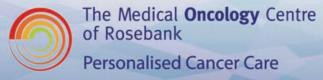
- A recent review has concluded that inpatient oral antibacterial therapy can be safely substituted for conventional intravenous
- (i.v.) treatment in some low-risk FN patients, namely those who are haemodynamically stable

MONOTHERAPY

- Recent data has shown that prompt empirical usage of a broad spectrum beta-lactam antibiotic with anti-pseudomonal activity is sufficient as an initial treat for FN
- Meta-analyses of a combination treatment with a broad spectrum beta- lactam antibitiotic with anti-pseudomonal activity and aminoglycoside antibiotic resulted in increased toxicity and similar survival

AMINOGLYCOSIDE ANTIBIOTICS

- The addition of aminoglycoside antibiotics (which used to be the standard of care) should be limited to patients who are hemodinamically unstable
- Ciprofloxin is an important alternative to aminoglycoside antibiotics in this setting (as part of a combination regime), particularly in those patients with impaired renal function



EMPIRIC DUO-THERAPY REGIMENS

 There are highly effective monotherapy regimens for neutropenic fever

 Initial empiric duo-therapy regimens may be most appropriate in unstable patients

 In institutions in which multidrug-resistant pathogens are frequently encountered

ADDITION OF VANCOMYCIN TO AN EMPIRIC REGIMEN

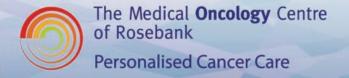
- Catheter-associated infection by coagulase- negative staphylococci has become the most common cause of bacteremia in patients with cancer
- Among the common gram-positive infections in neutropenic patients, the following are typically resistant to cephalosporins
 - MRSA
 - coagulase- negative Staphylococcus species
 - Enterococcus species

ADDITION OF VANCOMYCIN TO AN EMPIRIC REGIMEN

- Increased proportion of infections by gram- positive bacteria led to the rationale to add vancomycin to an empiric regimen for FN
- Change in the proportion of infections in neutropenic patients from predominantly gram-negative to grampositive bacteria

ADDITION OF VANCOMYCIN TO AN EMPIRIC REGIMEN

- Vancomycin addition to the initial empiric regimen was not associated with any benefit with regard to
 - duration of fever
 - morbidity
 - mortality related to gram-positive infections
- Initial empiric antibiotic coverage with vancomycin or other anti gram-positive bacterial pathogens should be avoided
- This approach is associated with higher toxicity and increased cost and no improvement in overall outcome



What Is the Role of Growth Factors (Filgrastin) in Management of FN

- CSFs are not generally recommended for treatment of established fever and neutropenia
- Maybe be used very complicated pts
- CSFs should be considered as prophylactic only

PERSISTENT FEVER IN THE NEUTROPENIC PATIENT

- Close observation after selection of initial empiric regimen for FN
- Daily physical examination throughout the duration of FN
- Initial antibiotic regimen modifications made based on new findings
- Antibiotic therapy should be continued for the duration of FN

OUTPATIENT ANTIBIOTIC THERAPY FOR FN

- Patients with a risk index grater than 21 may be candidates for outpatients antibiotic therapy for FN
- Prospective randomized studies have suggested that patients in the lowest risk group are reasonable candidates for carefully monitored empiric outpatient antibiotic therapy

OUTPATIENT ANTIBIOTIC THERAPY FOR FN

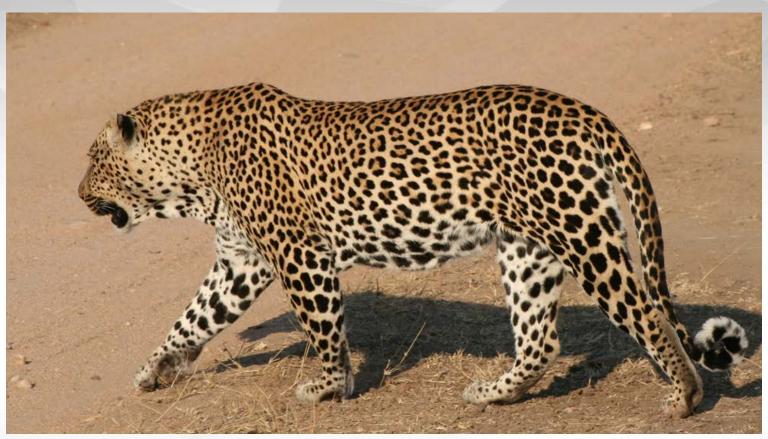
- Important limitations exist in making broad conclusions
 - The prospective studies each enrolled fewer than 200 patients
 - lacked sufficient power to detect small differences between treatment groups
 - Pooling data from different studies in the form of a metaanalysis is difficult
 - due to the differences in eligibility criteria
 - choice of antibiotics
 - criteria for hospital admission and discharge
 - criteria for a successful outcome

OUTPATIENT ANTIBIOTIC THERAPY FOR FN

- Although outpatient antibiotic therapy for FN neutropenic patients is widely used
- This approach can not be considered routine standard care
- Randomized clinical trials with sufficient statistical power are required to further define more precisely patients for whom outpatient management of neutropenic fever is safe

KEY ISSUES FOR OUTPATIENT MANAGEMENT

- Observation of low risk patients by experienced adequate staff
- Facility must be in proximity to an emergency care facility
- Adequate infrastructure for emergency management
- These facilities should also include fluid resuscitation, intravenous antibiotics and high care facility in the institution treating the patient

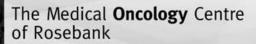


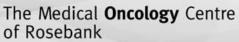
CONCLUSIONS

 Major progress has being made in the treatment of FN over 4 decades

 Additional research is required to resolve controversies

Thank You




Personalised Cancer Care

Questions?

