Gastrointestinal Toxicities of Checkpoint Blockade

Michael Dougan, MD, PhD
Director of the Immunotherapy Mucosal Toxicities Program
Assistant Professor of Medicine
Division of Gastroenterology
Massachusetts General Hospital

Disclosures

• Novartis (research funding), Genentech (consulting), Tillots (consulting), Moderna (consulting)

• I will be talking about non FDA approved indications for infliximab (and other anti-TNF medications), and vedolizumab

Immune-related adverse events are not just "side effects"

- Window into the biology of immune regulation in humans
 - In vivo immune receptor blockade
 - The side effects are the "phenotype"
- Potential insight into "sporadic" autoimmunity
 - Well-defined system
 - timing and nature of the immune perturbation is known

Managing immune toxicities to improve cancer therapy

- Minimize morbidity/mortality from immune toxicities without inhibiting antitumor immunity
- Novel therapeutics to avoid steroids
- Concurrent treatments
- •Prophylactic/preventative treatments in high risk patients
- Increasingly important with combination treatments

Is it important to avoid steroids?

Horvat et al. JCO. 2015. Single center retrospective study

Is it important to avoid steroids?

Horvat et al. JCO. 2015. Single center retrospective study

- Patients only received steroids if they had an adverse event
- Anyone with a serious adverse event got steroids
- Could this response be better with alternate immune suppression?

Steroids may inhibit the antitumor response

Metastatic melanoma treated with ipilimumab (all patients in the analysis developed hypophysitis)

Baseline steroids are associated with decreased survival after immunotherapy for lung cancer

The gut is the most immunologically complex barrier in the body

Careful immune regulation is essential

- Dietary proteins
- Commensal bacteria
- Pathogenic microorganisms
- Toxins

Abreu et al. Nat. Rev. Imm. 2010

Disruption of immune homeostasis leads to a widespectrum of common GI toxicities

Ipilimumab	αPD-1a	αPD-L1 ^b	lpilimumab +
			αPD-1

Common toxicities of c	3.	, ,		
Fatigue	15.2-48	10.4-34.2	13.1-25	35.1-39
Asthenia	6.3-11	4.8-11.5	6.6	9
Pyrexia	6.8-15	4.2-10.4	6.6-8	18-20
Dermatologic				
Pruritus	26-35.4	8.5-20	8-10	33.2-40
Rash	14.5-32.8	0.9-25.9	8	40.3-41
Gastrointestinal (GI)				
Diarrhea	22.7-37	7.5-19.2	9.8-15	44.1-45
Nausea	8.6-24	5.7-16.5	6.6-17	21-25.9
Vomiting	7-11	2.6-16.4		13-15.3
Decreased appetite	9-12.5	1.9-10.9	8-8.2	12-17.9
Constipation	9	2-10.7		8-11
Colitis	8.2-11.6	0.9-3.6	2	18-23
Hepatitis	1.2-3.9	1.1-3.8	4	15.3-27
Increased lipase	14-17	0.6	- 100	13-18
Musculoskeletal				
Arthalgia	5-9	2.8-14	6-10	10.5-11
Endocrine				
Hypothyroidism	1-15	4.8-11	5-8	15.3-17
Hyperthyroidism	2.3-4.2	3.2-7.8		
Hypophysitis	2-2.3	0.4-0.7		12-13
Adrenal insufficiency	0-2	0.4		5
Pulmonary				

(Entero)colitis Hepatitis

Dougan M. Frontiers in Immunology. 2017.

0 - 1.8

0.4 - 5.8

9-11

Pneumonitis

The spectrum is dependent on the pathway targeted

	Ipilimumab	αPD-1ª	αPD-L1 ^b	lpilimumab ⊣ αPD-1
Common toxicities of	checkpoint blo	ckade (all g	rades)	
Constitutional				
Fatigue	15.2-48	10.4-34.2	13.1-25	35.1-39
Asthenia	6.3-11	4.8-11.5	6.6	9
Pyrexia	6.8-15	4.2-10.4	6.6-8	18-20
Dermatologic				
Pruritus	26-35.4	8.5-20	8-10	33.2-40
Rash	14.5-32.8	0.9-25.9	8	40.3-41
Gastrointestinal (GI)				
Diarrhea	22.7-37	7.5-19.2	9.8-15	44.1-45
Nausea	8.6-24	5.7-16.5	6.6-17	21-25.9
Vomiting	7-11	2.6-16.4		13-15.3
Decreased appetite	9-12.5	1.9-10.9	8-8.2	12-17.9
Constipation	9	2-10.7		8-11
Colitis	8.2-11.6	0.9-3.6	2	18-23
Hepatitis	1.2-3.9	1.1-3.8	4	15.3-27
Increased lipase	14-17	0.6		13-18
Musculoskeletal				
Arthalgia	5-9	2.8-14	6-10	10.5-11
Endocrine				
Hypothyroidism	1-15	4.8-11	5-8	15.3-17
Hyperthyroidism	2.3-4.2	3.2-7.8		
Hypophysitis	2-2.3	0.4-0.7		12-13
Adrenal insufficiency	0-2	0.4		5
Pulmonary				
Pneumonitis	0-1.8	0.4-5.8	4	9-11

Enterocolitis

- (Entero)colitis is the most common GI toxicity from current checkpoint blocking antibodies (CTLA-4, PD-1, PD-L1)
- Range of severity (many patients have indolent disease)
- Likely responsible for most treatment related diarrhea

• Often isolated to the colon, but can involve the GI tract from stomach to rectum

Dougan M. Frontiers in Immunology. 2017.

Enterocolitis

- Watery diarrhea >> pain or cramping
- Urgency
- Bleeding is rare (often unrelated hemorrhoids, metastatic disease)
- Can be accompanied by nausea/vomiting (enteritis)

Dougan M. Frontiers in Immunology. 2017.

Not all patients with suspected colitis have inflammation

	N	% total	% inflammation
Total	80	100%	-
Mucosal Inflammation	63	78.8%	100%
Colitis	43	53.3%	68.3%
Enterocolitis	6	7.5%	9.5%
(Gastro)enteritis	11	13.8%	17.5%
Celiac	1	1.3%	1.6%
Other Inflammation	2	2.5%	3.2%

Not all patients with suspected colitis have inflammation

	N	% total	% inflammation
Total	80	100%	-
Mucosal Inflammation	63	78.8%	100%
Colitis	43	53.3%	68.3%
Enterocolitis	6	7.5%	9.5%
(Gastro)enteritis	11	13.8%	17.5%
Celiac	1	1.3%	1.6%
Other Inflammation	2	2.5%	3.2%

•Endoscopy is the best way to diagnose mucosal inflammation

What type of endoscopic exam is sufficient?

Checkpoint colitis: pancolitis with regional variability

Dougan M. Frontiers in Immunology. 2017.

Table 2. Site of inflammation on colonoscopies of patients with anti-CTLA-4 enterocolitis. Variation in the denominator is due to incomplete colonoscopy.

Site of inflammation $(n/N, \%)$			
Ileum	5/25	20	
Ascending colon	27/33	82	
Transverse	28/35	80	
Descending colon	35/38	92	
Sigmoid colon	36/38	95	
Rectum	32/39	82	
Extensive colitis	23/35	66	
Patchy distribution	18/33	55	

Marthey et al. J Crohns Colitis 2016.

•Flex sigs are usually sufficient (~95% sensitive for colitis when present)

Enterocolitis is common

	N	% total	% inflammation
Total	80	100%	-
Mucosal Inflammation	63	78.8%	100%
Colitis	43	53.3%	68.3%
Enterocolitis	6	7.5%	9.5%
(Gastro)enteritis	11	13.8%	17.5%
Celiac	1	1.3%	1.6%
Other Inflammation	2	2.5%	3.2%

A significant minority for upper inflammation

	N	% total	% inflammation
Total	80	100%	-
Mucosal Inflammation	63	78.8%	100%
Colitis	43	53.3%	68.3%
Enterocolitis	6	7.5%	9.5%
(Gastro)enteritis	11	13.8%	17.5%
Celiac	1	1.3%	1.6%
Other Inflammation	2	2.5%	3.2%

•Open question: the role for EGD in evaluation?

When should endoscopy be considered?

- Grade 3/4 diarrhea and anyone who is sick enough to be admitted
- Persistent grade 2 disease (sometimes even grade 1)
- Atypical symptoms: bleeding, pain, fevers
- Atypical onset: months after discontinuation of immunotherapy, <7 days after starting, rapid escalation
- Prior to initiation of steroids?
- Diarrhea on investigational combinations, or other drugs that cause diarrhea?
- To guide the decision to re-challenge?

Microscopic appearance

- Lymphocytic and neutrophilic infiltrate
- T cells appear to be the key drivers (unclear target)
- Prominent epithelial apoptosis
- Preserved crypts
- We will have an incomplete picture of the cellular infiltrate

CTLA-4 and PD-1/PD-L1 have different regulatory roles in the gut

Ipilimumab colitis

- More frequent and more severe
- Rapid onset
- Dose-dependent
- Rapidly resolves

PD1-blockade colitis

- more microscopic inflammation
- Indolent course
- Dose-independent (?)

GENERAL HOS

Slow resolution

GASTROENTEROLOGY

TNFα is likely a key driver of checkpoint colitis

- Most patients with checkpoint colitis respond to steroids
 - 30-40% of severe cases are steroid refractory
- Infliximab (anti-TNF α) is highly effective in ipilimumab and anti-PD1 mediated colitis
 - Suggests a critical functional role for this cytokine in disease pathogenesis
- We have a low threshold for using it (41% of our checkpoint colitis patients go on infliximab)
 - Similar rates for ipilimumab and anti-PD-1 colitis, but ipilimumab colitis seems to respond faster
- Vedolizumab also appears to be effective in some patients (Abu-Sbeih et al. JITC. 2018)
 - Trafficking of new T cells into the gut probably plays a role in maintaining inflammation

Infliximab does not altered overall survival

Overall survival, almost completely driven by the melanoma

Can we predict who is going to need infliximab?

- All current data are retrospective
- Two published case series found an association with colonic ulceration (Wang et al. IBD. 2018, Geukes et al. ESMO Open. 2018)
- In our MGH cohort of 49 patients with detailed endoscopic and oncologic clinical data:
 - Mayo Endoscopic Score is higher in patients who need infliximab (1.14 vs 2.26 out of 3, p = 0.001)
 - No association with CTCAE grade (2.05 vs 1.95)
 - MES 3 (ulcers) is associated with an increased need for infliximab (p < 0.009)
 - No association with rectal bleeding
 - Patients with enteritis tend to get infliximab more often (p = 0.08)
 - No association with pathway inhibited (PD-1 vs CTLA-4)

What if patients don't respond to infliximab?

- This question has not been adequately addressed in the literature
 - Best data is for vedolizumab (Abu-Sbeih et al. JITC. 2018)
- We have rarely addressed it at MGH
 - Some cases appear to be infectious (C Diff >> CMV, aspergillus)
 - I always rescope
- What other options do we have?
 - Surgery
 - Ustekinumab (anti-IL-12/23 p40)
 - Other cytokine inhibitors (anti-IL-1beta, IL-6)
 - JAK inhibitors, CTLA-4-Ig (likely inhibit antitumor responses)
 - FMT?

Summary of Key Points

- Corticosteroids may limit the treatment effect from checkpoint blockade
- Endoscopy can be useful for risk stratification (ulcerating disease), and for identifying patients who do not require systemic steroids
- A significant fraction of patients with mucosal inflammation on checkpoint blockade have isolated enteritis (~20%)
- CTLA-4 and PD-1 colitis are not completely overlapping syndromes
- TNF-α appears to be a key mediator of checkpoint colitis

Acknowledgements

MGH GI

Molly Thomas

Andy Chan

NIH/CTEP

Elad Sharon

Ramnik Xavier

Md Aladdin Bhuyian

Funded by the AGA Research Foundation

MGH	Cancer	Center
-----	--------	--------

Kerry Reynolds

Alexandra-Chloe Villani

Ryan Sullivan

Justine Cohen

Leyre Zubiri

Meghan Mooridian

Donald Lawrence

Keith Flaherty

Riley Fadden

Krista Rubin

Genevieve Boland

Tatyana Sharova

Maclean Sellers

Dana-Farber Cancer Institute

Stephanie Dougan

Kai Wucherpfennig

Adrienne Louma

Lestat Ali

Osama Rahma

Stephen Hodi

Elizabeth Buchbinder

Jonathan Schoenfeld

Patrick Ott

MD Anderson Cancer Center

Hussein Tawbi

Yinghong (Mimi) Wang

MIT/Koch

Michael Birnbaum

Memorial Sloan-Kettering

David Faleck

Novartis

Glenn Dranoff

GASTROENTEROLOGY