Alterations in Patterns of Gene Expression and Perturbed Pathways in the Gut-Brain Axis Are Associated With Chemotherapy-Induced Nausea

Komal Singh RN, MS, PhD
Post-Doctoral Fellow
School of Nursing, University of California San Francisco

Conflict of Interest Disclosure

KOMAL SINGH, RN, MS, PHD

This study has no real or apparent conflicts of interest to report.

Background

- Chemotherapy-induced nausea (CIN) occurs in 30% to 60% oncology patients
- Current antiemetic interventions are not efficacious
- Current hypothesized mechanisms that underlie
 CIN have limited support
- Understanding the underlying mechanisms will lead to the development of more targeted interventions

Study Aim

To evaluate for differentially expressed genes and perturbed pathways associated with the gut-brain axis across two independent samples of oncology patients who did and did not experience CIN

Experimental Design

- Oncology patients (n=709) completed questionnaires that obtained information on demographic and clinical characteristics in the week prior to their second or third cycle of CTX
- CIN occurrence was assessed using the Memorial Symptom Assessment Scale
- Gene expression analyses was performed using RNAsequencing (sample 1, n=357) and Microarray (sample 2, n=352) methodologies
- Fisher's combined probability method was used to determine genes that were significantly differentially expressed and pathways that were significantly perturbed between the two nausea groups across both samples

Results

- CIN was reported by 63.6% of the patients in sample 1 and by 48.9% of the patients in sample
- Using Fisher's combined probability method, 703
 genes were significantly DE at a strict FDR of
 5% under the Benjamini-Hochberg (BH)
 procedure
- Using Fisher's combined probability method, 37
 pathways were significantly perturbed using a strict FWER of 1% under the Bonferroni method

MAJOR FINDING

Nine perturbed pathways were involved in mechanisms associated with

- nanisms associated with

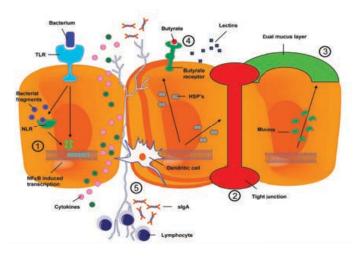
 Supportive Care
 MAKES EXCELLENT
 CANCER CARE POSSIBLE
- Mucosal Inflammation

Disruption of Gut Microbiome

Mucosal Inflammation

Pathway ID	Name	Adjusted pGlobal*
hsa04060	Cytokine-cytokine receptor interaction	0.00084
hsa04062	Chemokine signaling pathway	0.00084
hsa04010	Mitogen activated protein kinase signaling pathway	0.00306
hsa04064	Nuclear factor κB signaling pathway	0.00982

*FWER of 1% under the Bonferroni method


Disruption of the Gut Microbiome

Pathway ID	Name	Adjusted pGlobal*
hsa03320	Peroxisome-proliferation-activated receptor signaling pathway	0.00084
hsa04530	Tight junction	0.00084
hsa04659	Interleukin-17 producing helper T cells differentiation pathway	0.00516
hsa04612	Antigen processing and presentation	0.00652
hsa04672	Intestinal immune network for immunoglobulin A production	0.00917
hsa04064	Nuclear factor κB signaling pathway	0.00982

*FWER of 1% under the Bonferroni method

Mucosal Inflammation and Disruption of the Gut Microbiome

CTX-induced alterations of the gut microbiome can increase mucosal inflammation by

- Influencing the production and release of immunoglobulin A (IgA)
- Regulating signaling cascades that mediate inflammatory responses
- Disorganization of tight junctions

Conclusions

- Persistent CIN remains a significant clinical problem
- First study to report differentially expressed genes and perturbed pathways were associated with two novel mechanisms (i.e., mucosal inflammation and disruption of gut microbiome) and occurrence of CIN
- While additional research is warranted to evaluate complex mechanisms that underlie CIN, our study provides insights into why unrelieved CIN remains a significant clinical problem

Gut-Brain Axis

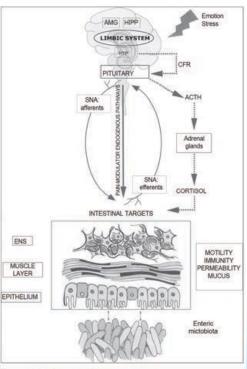


Figure 1 Microbiome gut-brain axis structure

- GBA comprises bidirectional communication between the brain and intestinal functions
- Gut microbiome influences these interactions
- •Principal mechanisms of bidirectional communication include:
 - Mucosal immune regulation
 - ➤ Protection of intestinal barrier and tight junction integrity
 - ➤ Alterations of intestinal permeability

Gut-Brain Axis

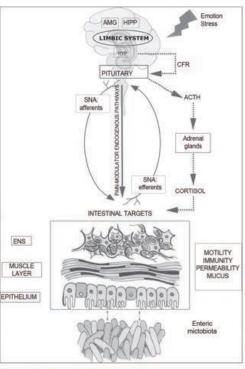


Figure 1 Microbiome gut-brain axis structure

- Mucosal inflammation and Disruption of gut microbiome by CTX can alter the function of the GBA
- This alteration in the GBA may be an underlying mechanism associated with the occurrence of CIN

Acknowledgements

 This study was supported by a grant from the National Cancer Institute (NCI, CA134900)

Funding for Doctoral Training

- National Institute of Nursing Research
 - T32 NR007088
- American Cancer Society Doctoral Degree Scholarship in Cancer Nursing
- El Camino Hospital Auxiliary Scholarship
- Nursing Alumni Association Scholarship

Funding for Postdoctoral Training

- National Institute of Nursing Research
 - T32 NR016920

Acknowledgements

- Christine Miaskowski
- Kord Kober
- Steve Paul
- Bruce Cooper
- Judy Mastick
- Grace Mausisa
- Melissa Mazor
- Kay Bolla
- Anatol Sucher

- Sandra Weiss
- Elena Flowers
- Anand Dhruva
- UCSF PN iSMRG

Patient participants

