Bias Assessment of Observational Studies

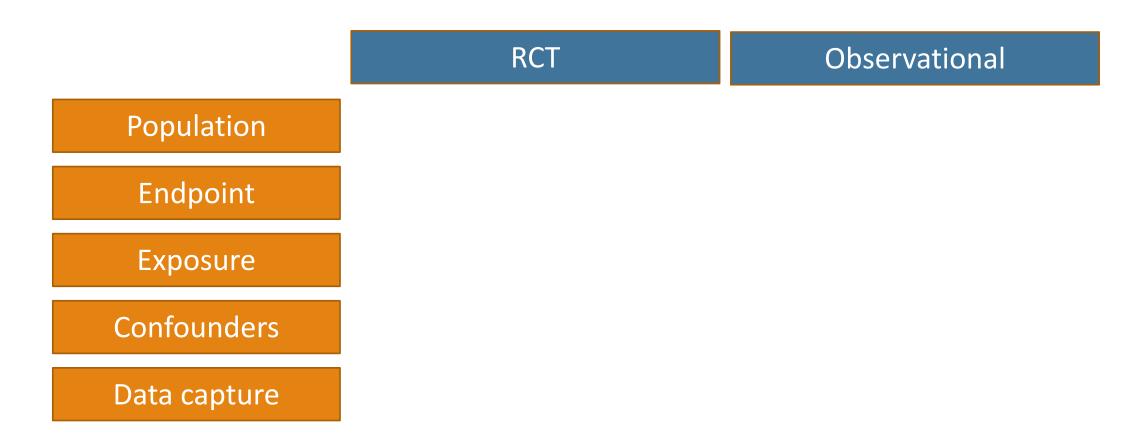
THOMAS G. STEWART, PHD

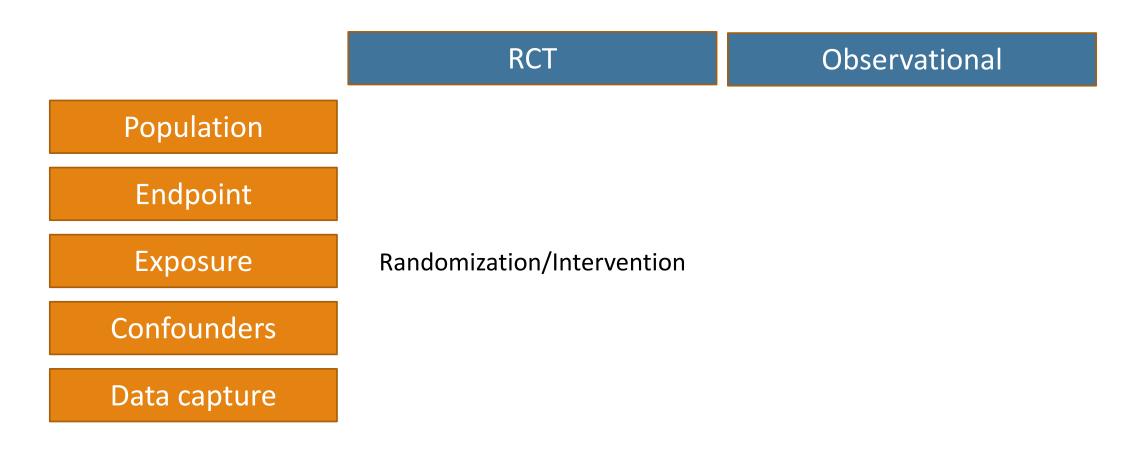
Note: These slides will be posted on my faculty page within days of the conference (after correcting errors and incorporating suggestions made by you).

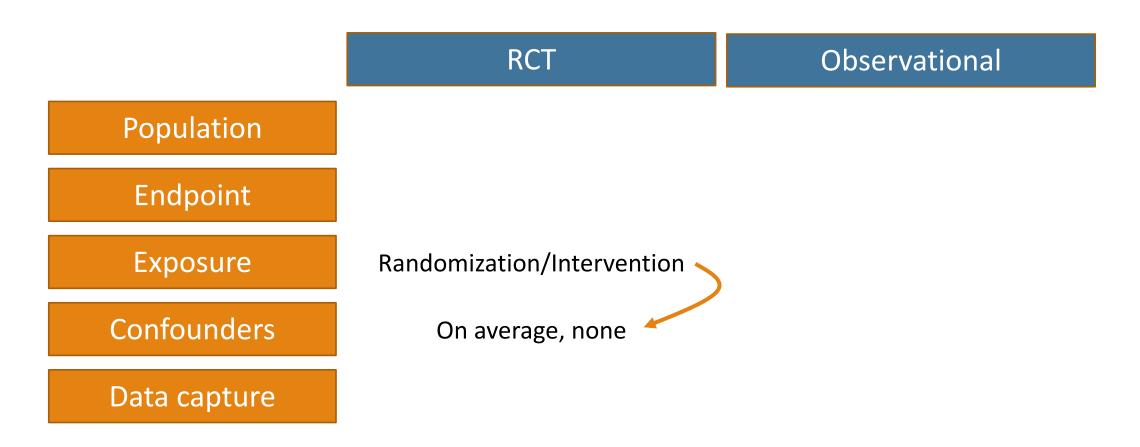
See tgstewart.xyz

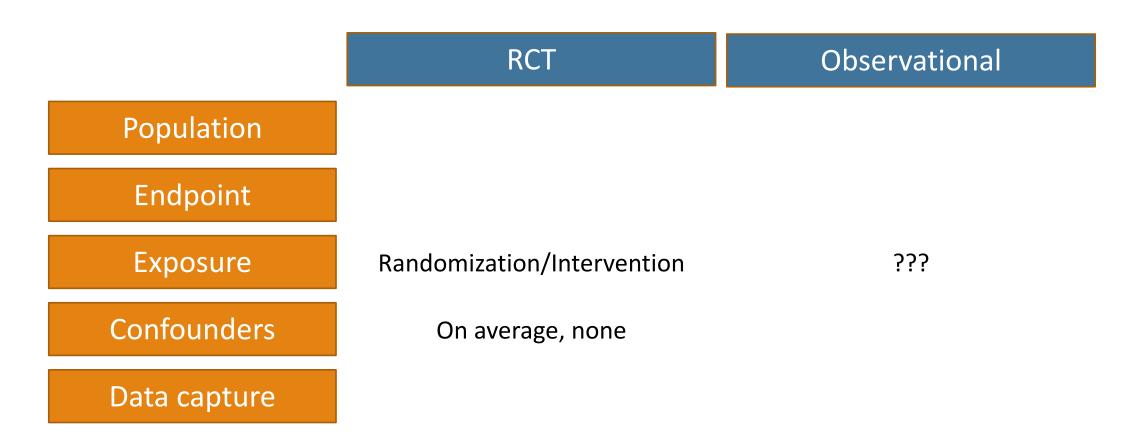
Who am I?

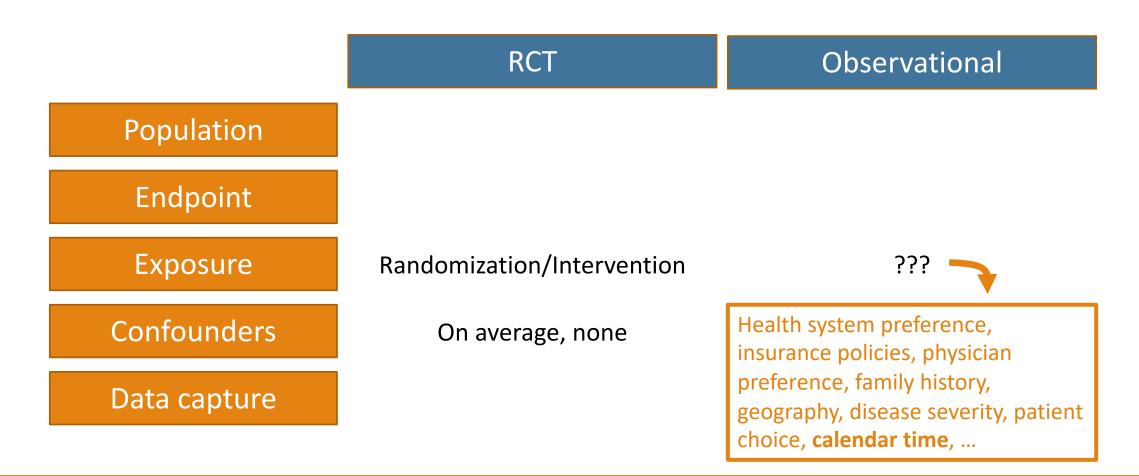
- Assistant Professor of Biostatistics at Vanderbilt University Medical Center
- Collaborative experience with a number of national and international registries, most notably
 - HCV-TARGET
 - AHSQC
- Collaborative experience with state and national claims and administrative data


Why observational studies?


In the past


- Ethical considerations:
 - Can't randomize individuals to smoke/not-smoke


More recently


- •Economic considerations:
 - The data is there ... Why not use it?

Why care about confounders?

Take it to the extreme

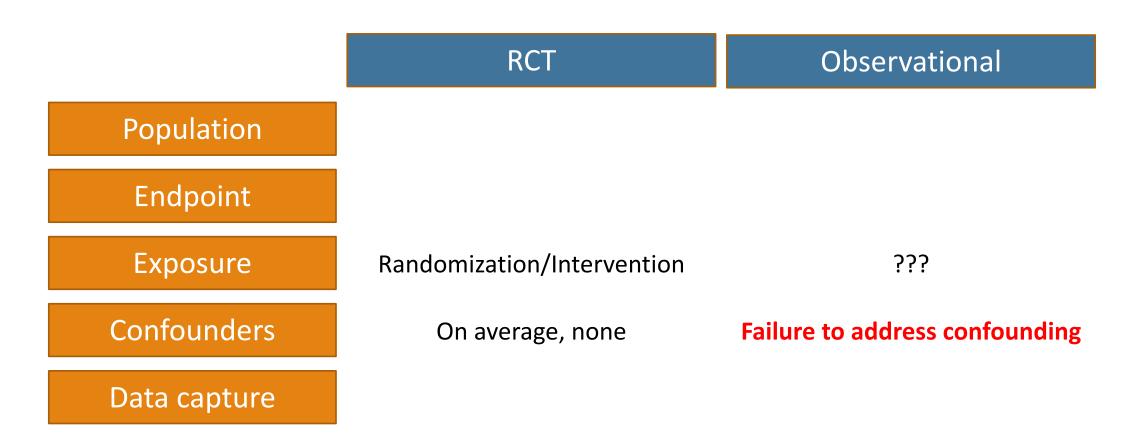
If treatment A was only given to patients with severe disease and treatment B was only given to patients with mild disease,

What would one learn from a comparison of outcomes between treatment groups?

Why care about confounders?

Less extreme

If treatment A was **mostly** given to patients with severe disease and treatment B was **mostly** given to patients with mild disease,


What would one learn from a comparison of outcomes between treatment groups?

Why care about confounders?

Balance

One of the reasons randomization is so important is that it creates, **on average**, comparison groups that are balanced in terms of disease severity and other confounders.

What would one learn from a comparison of outcomes between treatment groups created by randomization?

Disclaimer about examples:

I am a statistician, not a clinician.

While I can speak abstractly about the concept of "confounding" and "treatment by indication bias", I am hesitant to editorialize about specific clinical examples outside the areas of my collaborative experience.

As such, the examples in this workshop of studies that may be biased are drawn from published criticism. Example:

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Association Between Tracheal Intubation During Pediatric In-Hospital Cardiac Arrest and Survival

Lars W. Andersen, MD, MPH; Tia T. Raymond, MD; Robert A. Berg, MD; Vinay M. Nadkarni, MD; Anne V. Grossestreuer, PhD; Tobias Kurth, MD, ScD; Michael W. Donnino, MD; for the American Heart Association's Get With The Guidelines–Resuscitation Investigators

JAMA. 2016;316(17):1786-1797. doi:10.1001/jama.2016.14486

Criticism:

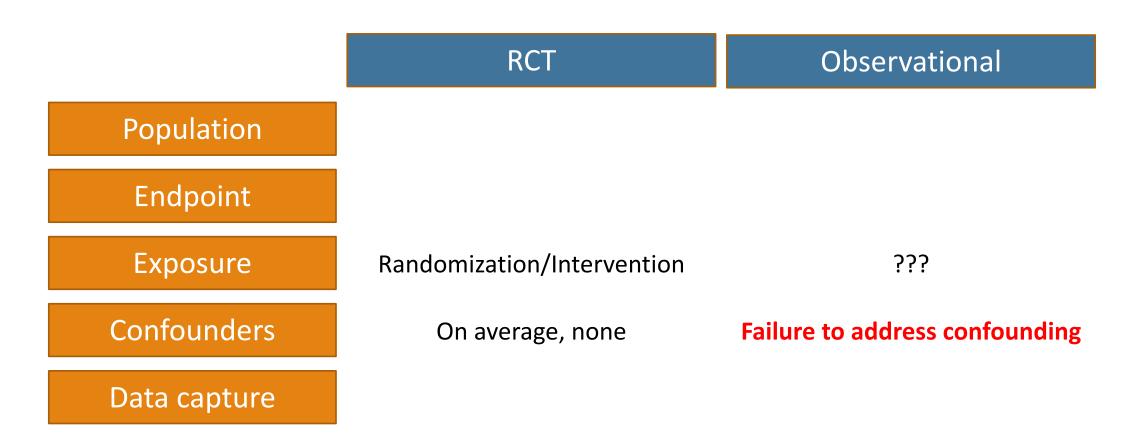
JAMA Guide to Statistics and Methods

Confounding by Indication in Clinical Research

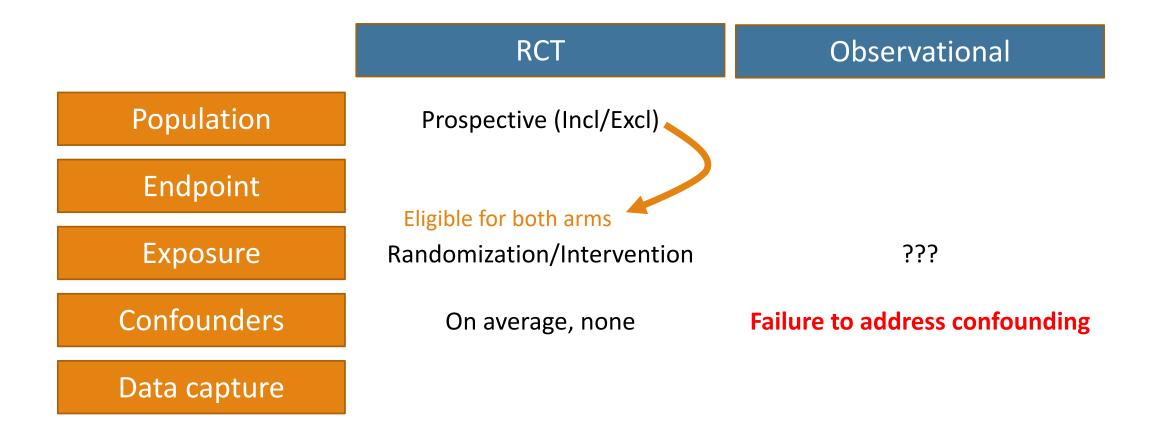
Demetrios N. Kyriacou, MD, PhD; Roger J. Lewis, MD, PhD

JAMA November 1, 2016 Volume 316, Number 17

Criticism:


JAMA Guide to Statistics and Methods

Confounding by Indication in Clinical Research


Demetrios N. Kyriacou, MD, PhD; Roger J. Lewis, MD, PhD

JAMA November 1, 2016 Volume 316, Number 17

The nonrandomized assessment of tracheal intubation vs bag-valve-mask ventilation for pediatric cardiopulmonary arrest reported by Andersen et al² in the November 1, 2016, issue of *JAMA* is likely to be complicated by confounding by indication. Clinical conditions (eg, asthma, cystic fibrosis, and upper airway obstruction) existing before and during a patient's cardiopulmonary resuscitation will both affect the patient's outcome and influence the type of airway management.² In other words, it is likely that children with more severe disease and worse overall prognosis for survival had a greater probability to be intubated.² This pos-

	RCT	Observational
Population	Prospective (Incl/Excl)	
Endpoint		
Exposure	Randomization/Intervention	???
Confounders	On average, none	Failure to address confounding
Data capture		

	RCT	Observational
Population	Prospective (Incl/Excl)	Retrospectively got exposure
Endpoint		
Exposure	Randomization/Intervention	???
Confounders	On average, none	Failure to address confounding
Data capture		

	RCT	Observational
Population	Prospective (Incl/Excl)	Retrospectively got exposure
Endpoint		
Exposure	Randomization/Intervention	Just because a patient received treatment A, was the patient eligible to receive treatment B?
Confounders	On average, none	Failure to address confounding
Data capture		

Why care about eligibility?

Take it to the extreme

If patients in treatment group A were only eligible to receive treatment A, and patients in treatment group B was only eligible to receive treatment,

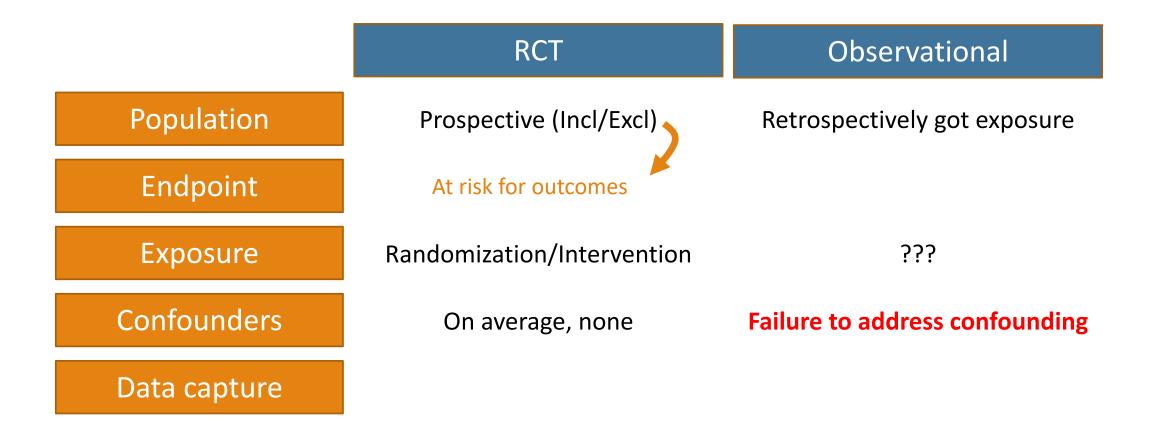
What would one learn from a comparison of outcomes between treatment groups?

Why care about eligibility?

Equipoise

One of the reasons an interventional comparison is meaningful is that all patients could have potentially have received both treatments. There was some degree of equipoise of the treatments for the study subjects.

What would one learn from a comparison of outcomes between treatment groups created by randomization?


	RCT	Observational
Population	Prospective (Incl/Excl)	Retrospectively got exposure
Endpoint		
Exposure	Randomization/Intervention	Failure to consider equipoise
Confounders	On average, none	Failure to address confounding
Data capture		

Example from collaborative experience:

Open repair vs Laparoscopic repair of ventral hernias

Among surgeons in a national registry of hernia repairs, certain complex hernias are only repaired using an open surgical approach.

To include patients with this specific type of hernia in a comparison of open and laparoscopic approaches would be a mistake because this group of patients is not eligible to receive both surgical approaches.

	RCT	Observational
Population	Prospective (Incl/Excl)	Retrospectively got exposure
Endpoint	Prospectively at risk	At risk for outcomes?
Exposure	Randomization/Intervention	???
Confounders	On average, none	Failure to address confounding
Data capture		

Why care about at-risk?

Take it to the extreme

Are males reasonable controls for studies of treatment for ovarian cancer?

	RCT	Observational
Population	Prospective (Incl/Excl)	Retrospectively got exposure
Endpoint	Prospectively at risk	Inappropriate controls
Exposure	Randomization/Intervention	Failure to consider equipoise
Confounders	On average, none	Failure to address confounding
Data capture		

Editorial:

Selection of appropriate controls is more difficult than most than most of us (including me) realize.

Selection of appropriate controls is especially difficult when the control arm is passive, i.e., defined by NOT receiving an intervention.

Editorial:

Selection of appropriate controls is more difficult than most than most of us (including me) realize.

Selection of appropriate controls is especially difficult when the control arm is passive, i.e., defined by NOT receiving an intervention.

Why? The decision to not actively intervene is generally not recorded in the medical record. It is also correlated with patient priorities and the desire for aggressive care.

Editorial:

Selection of appropriate controls is more difficult than most than most of us (including me) realize.

Selection of appropriate controls is especially difficult when the control arm is passive, i.e., defined by NOT receiving an intervention.

Why? The decision to not actively intervene is generally not recorded in the medical record. It is also correlated with patient priorities and the desire for aggressive care.

Are these passive controls really eligible to receive both treatment arms? What is the "entry date" for passive controls?

	RCT	Observational
Population	Prospective (Incl/Excl)	Retrospectively got exposure
Endpoint	Prospectively at risk	Inappropriate controls
Exposure	Randomization/Intervention	Failure to consider equipoise
Confounders	On average, none	Failure to address confounding
Data capture		

	RCT	Observational
Population	Prospective (Incl/Excl)	Retrospectively got exposure
Endpoint	Prospectively at risk	Inappropriate controls
Exposure	Randomization/Intervention	Failure to consider equipoise
Confounders	On average, none	Failure to address confounding
Data capture	Identical follow-up protocol	

	RCT	Observational
Population	Prospective (Incl/Excl)	Retrospectively got exposure
Endpoint	Prospectively at risk	Inappropriate controls
Exposure	Randomization/Intervention	Failure to consider equipoise
Confounders	On average, none	Failure to address confounding
Data capture	Identical follow-up protocol	???, EHR, Registry,

Why care about follow-up?

Take it to the extreme

If patients in treatment group A interact with their health-care providers weekly, but patients in treatment group B interact with their care providers only as needed,

Are treatment groups equally likely to capture study endpoints?

What can go wrong in an observational study?

	RCT	Observational
Population	Prospective (Incl/Excl)	Retrospectively got exposure
Endpoint	Prospectively at risk	Inappropriate controls
Exposure	Randomization/Intervention	Failure to consider equipoise
Confounders	On average, none	Failure to address confounding
Data capture	Identical follow-up protocol	Inconsistent follow-up

	Pit-fall	Solution
Population	Retrospectively got exposure	
Endpoint	Inappropriate controls	
Exposure	Failure to consider equipoise	
Confounders	Failure to address confounding	
Data capture	Inconsistent follow-up	

Design Choices vs Statistical Methods

Not every bias can be corrected with a statistical method. Some bias is only controlled with appropriate study design.

	Pit-fall	Solution
Population	Retrospectively got exposure	
Endpoint	Inappropriate controls	
Exposure	Failure to consider equipoise	
Confounders	Failure to address confounding	Regression, propensity score methods
Data capture	Inconsistent follow-up	

Matching (The beautiful table 1 approach)

Annals of Internal Medicine

Original Research

Comparative Effectiveness of Sulfonylurea and Metformin Monotherapy on Cardiovascular Events in Type 2 Diabetes Mellitus A Cohort Study

Christianne L. Roumie, MD, MPH; Adriana M. Hung, MD, MPH; Robert A. Greevy, PhD; Carlos G. Grijalva, MD, MPH; Xulei Liu, MD, MS; Harvey J. Murff, MD, MPH; Tom A. Elasy, MD, MPH; and Marie R. Griffin, MD, MPH

6 November 2012 Annals of Internal Medicine Volume 157 • Number 9

ORIGINAL RESEARCH Effects of Sulfonylureas and Metformin on Cardiovascular Events

Table 1. Patient Characteristics in Full and Propensity Score–Matched Cohorts, by New Exposure to Metformin or Sulfonylureas

Characteristic		Full Cohort		Propensity Score–Matched Cohort		
	Metformin $(n = 155\ 025)$	Sulfonylureas $(n = 98 665)$	Standardized Difference*†		Sulfonylureas $(n = 80 648)$	Standardized Difference*‡
Median age (IQR), y	62 (56–71)	67 (57–76)	0.33	65 (57–74)	64 (56–74)	0.03‡
Men, %	95	97	0.12	97	97	0.01
Race, %						
White	74	75	0.04	75	75	0.01
Black	12	13	0.04	13	13	0.00
Hispanic/other	6	6	0.03	6	6	0.00
Available§	91	95	0.13	94	94	0.01
HbA _{1c}						
Median level (IQR), %	7.0 (6.4–7.8)	7.3 (6.6–8.2)	0.17	7.2 (6.5-8.2)	7.2 (6.6–8.2)	0.02
Available§	67	61	0.14	63	63	0.01

IDI cholesterol

ORIGINAL RESEARCH | Effects of Sulfonylureas and Metformin on Cardiovascular Events

Table 1. Patient Characteristics in Full and Propensity Score–Matched Cohorts, by New Exposure to Metformin or Sulfonylureas

Characteristic		Full Cohort		Proper	nsity Score-Matched Co	ohort
	Metformin $(n = 155\ 025)$	Sulfonylureas (n = 98 665)	Standardized Difference*†	Metformin $(n = 80 648)$	Sulfonylureas $(n = 80 648)$	Standardized Difference*‡
Median age (IQR), y	62 (56–71)	67 (57–76)	0.33	65 (57–74)	64 (56–74)	0.03‡
Men, %	95	97	0.12	97	97	0.01
Race, %						
White	74	75	0.04	75	75	0.01
Black	12	Maan diffa	roncoc in	abconuod co	verietes are	
Hispanic/other	6	wean une	rences in o	observeu co	variates are	
Available§	91	minimized	in the mat	tched cohor	t.	
HbA _{1c}						
Median level (IQR), %	7.0 (6.4–7.8)	7.3 (6.6–8.2)	0.17	7.2 (6.5–8.2)	7.2 (6.6–8.2)	0.02
Available§	67	61	0.14	63	63	0.01

ORIGINAL RESEARCH | Effects of Sulfonylureas and Metformin on Cardiovascular Events

Table 1. Patient Characteristics in Full and Propensity Score–Matched Cohorts, by New Exposure to Metformin or Sulfonylureas

Characteristic		Full Cohort		Propensity Score–Matched Cohort		
	Metformin (<i>n</i> = 155 025)	Sulfonylureas $(n = 98 665)$	Standardized Difference*†	Metformin $(n = 80 648)$	Sulfonylureas $(n = 80 648)$	Standardized Difference*‡
Median age (IQR), y	62 (56–71)	67 (57–76)	0.33	65 (57–74)	64 (56–74)	0.03‡
Men, %	95	91	0.12	97	97	0.01
Race, %						
White	74	75	201	75	75	0.01
Black	12	Matching	colocto poir			that are
Hispanic/other	6	Watching	selects pair	rs (or groups	s) of subjects	that are
Available§	91	similar.				
HbA _{1c}						
Median level (IQR), %	7.0 (6.4–7.8)			1.1.6		
Available§	67	Some sub	ects are du	scarded tror	n the analysis	C

IDI cholesterol

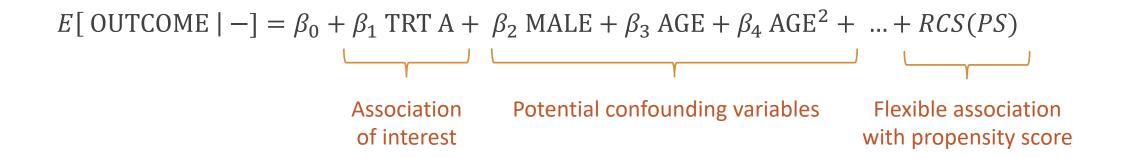
ORIGINAL RESEARCH Effects of Sulfonylureas and Metformin on Cardiovascular Events

Table 1. Patient Characteristics in Full and Propensity Score–Matched Cohorts, by New Exposure to Metformin or Sulfonylureas

Characteristic	Full Cohort			Propensity Score-Matched Cohort		
	Metformin $(n = 155\ 025)$	Sulfonylureas (n = 98 665)	Standardized Difference*†	Metformin $(n = 80 648)$	Sulfonylureas $(n = 80 648)$	Standardized Difference*‡
Median age (IQR), y	62 (56–71)	67 (57–76)	0.33	65 (57-74)	64 (56–74)	0.03‡
Men, %	95	97	0.12	97	97	0.01
Race, %	AC	ommon appro	oach to ide	ntity simila	r subjects	
White	74 bet	ween each tr	eatment g	roup is to us	se the).01
Black	12		•).00
Hispanic/other	6 pro	pensity score	•).00
Available§	91).01
HbA _{1c}	The	e propensity s	core is a si	ımmarv me	asure of all	
Median level (IQR), %	/ () (6 4-			-).02
Available§	67 im	portant covar	iates. It is	an estimate	of the).01
I DL cholesterol	pro	bability of re	ceiving one	e of the trea	tments.	

Regression (Use all the data approach)

 $E[OUTCOME | -] = \beta_0 + \beta_1 TREATMENT A + \beta_2 MALE + \beta_3 AGE + \beta_4 AGE^2 + \dots$


Regression (Use all the data approach)

 $E[\text{OUTCOME} | -] = \beta_0 + \beta_1 TREATMENT A + \beta_2 MALE + \beta_3 AGE + \beta_4 AGE^2 + \dots$ Association of interest Potential confounding variables

Regression (Use all the data approach)

 $E[\text{OUTCOME} | -] = \beta_0 + \beta_1 \quad \text{METFORMIN} + \beta_2 MALE + \beta_3 AGE + \beta_4 AGE^2 + \dots$ Association of interest Potential confounding variables

Regression and Propensity Score methods (Belt and suspenders approaches)

Regression and Propensity Score methods (Belt and suspenders approaches)

- 1. Regression with propensity score as flexible covariate
- 2. Propensity score matching then regression
- 3. Propensity score weighting with regression

	Pit-fall	Solution
Population	Retrospectively got exposure	
Endpoint	Inappropriate controls	
Exposure	Failure to consider equipoise	
Confounders	Failure to address confounding	Regression, propensity score methods, OTHER
Data capture	Inconsistent follow-up	

	Pit-fall	Solution
Population	Retrospectively got exposure	
Endpoint	Inappropriate controls	
Exposure	Failure to consider equipoise	Covariate overlap plots
Confounders	Failure to address confounding	Regression, propensity score methods
Data capture	Inconsistent follow-up	

	Pit-fall	Solution
Population	Retrospectively got exposure	
Endpoint	Inappropriate controls	Reasonable incl/excl
Exposure	Failure to consider equipoise	Covariate overlap plots
Confounders	Failure to address confounding	Regression, propensity score methods
Data capture	Inconsistent follow-up	

Editorial:

Selection of appropriate controls is more difficult than most than most of us (including me) realize.

Selection of appropriate controls is especially difficult when the control arm is passive, i.e., defined by NOT receiving an intervention.

One solution when the control arm is passive is to use time-varying covariate methods instead of awkward definitions for controls.

	Pit-fall	Solution
Population	Retrospectively got exposure	
Endpoint	Inappropriate controls	Reasonable incl/excl
Exposure	Failure to consider equipoise	Covariate overlap plots
Confounders	Failure to address confounding	Regression, propensity score methods
Data capture	Inconsistent follow-up	Design

Questions?